時間:2023-03-22 17:35:19
導語:在鐵道安全論文的撰寫旅程中,學習并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優秀范文,愿這些內容能夠啟發您的創作靈感,引領您探索更多的創作可能。

論文摘要:隧道工程是鐵路、公路和水利水電等大型項目中的重要工程,因地質條件不明造成隧道施工事故的危害是巨大的,加強隧道施工地質超前預報工作是非常必要的。國內外對隧道地震波超前預報技術已研究多年,筆者就這方面的現狀及進行了討論,指出了TSP儀器技術存在的不足,闡述了克服盲目性、提高科學預報的重要性,介紹了新開發的TGP隧道地震波預報系統與技術及應用效果。
隨著我國基本建設規模的擴大,隧道工程已經成為鐵路、公路和水利水電等大型項目中的重要工程。隧道工程的重要性越來越顯著,隧道工程的數量和長度明顯增加,規模不斷擴大。因此隧道工程的安全施工和貫通,是不可回避重要任務和技術難題。危及隧道工程施工的地質病害大致分為三類:1不良工程地質條件,諸如巖體的裂隙發育密集帶、構造破碎帶、巖溶發育帶、以及人工采礦造成的不良地質條件和高地應力造成的危害等;2不良水文地質條件,諸如巖溶水、構造和裂隙水等;3不良環境條件,諸如有毒有害氣體和強放射性的環境。對于以上地質問題,在隧道工程的勘察設計階段,已經投入大量的地質勘察工作,但是由于地質、地形條件的復雜性和相應勘察技術的現狀水平,以及時間、經費等條件的限制,勘察階段的地質資料一般難于達到施工階段的精度要求。國內外因地質條件不明造成隧道施工事故的教訓是不少的,例如:日本越新干線中山隧道涌水淹沒事件;前蘇聯貝加爾—阿穆爾干線上某隧道的突水事件;我國成昆線、大秦線、衡廣復線建設中,因地質問題的停工時間約占到1/3;以及不久前發生的四川某隧道瓦斯爆炸,造成重大事故和人員傷亡。以上隧道施工事故的危害是巨大的,因此強調加強隧道施工地質超前預報工作是非常必要的。
我國隧道地震波超前預報技術的研究起始于上個世紀的90年代,鐵道部第一勘測設計院物探隊提出“負視速度方法”。鐵道部第一勘測設計院是較早研究隧道地震超前預報的單位。他們在1992年7月,利用地震反射波方法對云臺山隧道進行隧道超前預報,預報成果與開挖后的隧道左壁“破碎帶”和“斷層”的位置基本一致。從上個世紀90年代初開始,我國物探技術人員一直沒有停止對隧道地震超前預報技術的研究。曾昭璜(1994)研究利用多波進行反演的“負視速度法”,這種方法利用來自掌子面前方的縱波、橫波、轉換波的反射震相在隧道垂直地震剖面上所產生的負視速度同相軸來反演反射界面的空間位置與產狀。北方交通大學的陳立成等人(1994)從全波震相分析理論和技術的角度研究隧道前方界面多波層析成像問題,進行隧道超前預報。他們的研究成果在頡河隧道、老爺嶺隧道地質預報中應用,取得預期的效果。該方法的工作原理是以地震反射波方法為基礎。工作中他們根據嫻熟的地震反射波技術進行數據采集和數據解釋,當時沒有開發出針對隧道地震預報的處理系統,同時受當時條件所限制,該項技術未能得到進一步深入研究和發展。
1995年左右鐵道部下屬單位引進瑞士“TSP202” 隧道地震波超前預報的儀器,當時曾組織系統內有關地質和物探專家在隧道工點進行了試驗,未見明顯的效果,認為其技術與“負視速度方法”基本一致,對其處理解釋系統爭議較大、認識褒貶不一,試驗工作無果而終,該設備技術的消化工作也就擱置了。時隔7年后,隧道安全施工要求進行地質預報,該儀器設備由鐵路系統的工程局又開始第二次引進,并直接用于隧道施工的預報工作。可以說由于第一次引進消化工作不深入,造成第二次引進后出現:應用工作中的盲目性和簡單化,以及其他一些不正?,F象。在宜萬鐵路隧道施工中不斷出現的問題,使人們開始反思,不少論文也提出了存在的問題,鐵道部也下發文件要求科學地進行超前預報。可以說短短幾年的應用實踐,人們仍然在探索著地質預報技術的進步。
隧道地震波超前預報屬于物探技術,但比地面的地震波物探技術復雜,我國的地質物探工作者一直沒有放松該技術的研究工作。北京市水電物探研究所研究地震波勘察檢測技術已經有近20年的歷史,并且是多道瞬態面波勘察技術的發明單位,生產的SWS型工程勘察與工程檢測儀器系統,已經為400多家勘察設計、高等院所廣泛應用,并且出口日本等國家。2003年該所投入人力物力研究隧道地震波預報技術,研究TGP12型隧道地質超前預報儀器,以及孔中高靈敏度三分量檢波設備,方便的孔中耦合技術,和Windows編程的數據處理軟件系統。在經過大量的預報實踐驗證后,于2005年通過了由國家隧道中心王夢恕院士組織的國內著名隧道專家的評審鑒定。該儀器系統推向市場不到2年的時間,已經有近20臺套投入到隧道超前地質預報工作中應用,反饋信息普遍受到用戶的好評。
鐵道部工程設計鑒定中心趙勇主編的《高速鐵路隧道》一書,提出隧道地質超前預報的方法有以下部分組成:①地質分析、②超前平行導坑預報法、③超前水平鉆孔法、④ 物理探測法。并闡述物理探測法與地質分析法、超前平行導坑預報法、超前水平鉆孔法相結合,解決不同地質災害的應用原則。書中介紹了國產TGP隧道地震波預報系統,聲波反射方法,地質雷達方法,紅外探水方法等。
本文就隧道地震波預報技術中的若干關鍵問題,并結合應用中的實際問題闡述如下,目的在于引起同行們討論,促進地震波預報技術理論水平的提高,促進采集數據質量的提高,促進資料的解釋推斷工作向合理化方向發展。
一、隧道地震波方法的預報原理
隧道地震預報工作利用地震反射波原理,在隧道內以排列方式激發的地震波,向三維空間傳播的過程中,遇到聲阻抗界面會產生反射波。聲阻抗是介質傳播彈性波的速度與介質密度的函數,介質的聲阻抗數值為速度與密度的乘積。因此地層中的巖性變化界面、構造破碎帶、巖溶和巖溶發育帶等界面會產生地震反射波,這種反射波被布置在隧道內的檢波器接收,輸入到儀器中進行信號的放大、數字采集和處理,實現地質預報的目的。
由此可以看出,隧道地震波預報技術是通過直接探查聲阻抗變化的界面,經過人工分析實現間接推斷地質病害的方法。
圖(2)不同夾角構造界面的地震波路徑與反射波記錄形態
圖(1)示意與隧道斜交的構造面,其地震波傳播的路徑圖,構造面上的地震波反射點在白色園內。圖(2)示意不同夾角構造面的地震波路徑與反射波記錄形態,與隧道夾角不同的構造面其反射點位置不同,地震波傳播路徑偏離隧道軸線也不同。構造面與隧道正交時地震波傳播路徑與隧道軸線平行,右圖為與隧道正交構造面產生的地震反射波記錄,根據反射波同相軸計算得到界面與檢波點之間巖體的地震波速度,該速度代表隧道圍巖的性質。由非正交條件下地震反射波記錄獲得的速度為地震波傳播路徑巖體的“視速度”,“視速度”值的大小不僅與路徑上巖體的性質有關,而且與界面和隧道的夾角有關。應用地震波預報構造面位置的計算是利用地震波在炮孔段的傳播速度,各構造面之間巖體的速度是綜合界面反射獲得的“估算速度”,不是隧道圍巖的真速度,應用中結合反射點偏離隧道軸線距離的遠近和巖體的各項異性分布綜合考慮使用。
圖(2)是理想模式的三份量地震波時距曲線形態。實際工作中采集的地震波是錯綜復雜的,理想模式的地震波是不常存在的,記錄上普遍存在有來自三維空間中多個方向的反射波,和各種形式的干擾波,這是應用技術中首先考慮的問題。
針對隧道地震波傳播的復雜性,TGP地震預報系統不僅利用地震反射波走時關系,同時采集空間地震波三分量記錄,進行地震波的極化分析與計算,該技術的突破有利于地質構造面產狀、規模和地質體性質的預報。
二、TGP隧道地質超前預報系統
隧道地震波預報的早期研究,是由研究和利用地震波在時間空間域中的運動學特征開始的,工作中認識到僅僅利用地震波運動學和動力學特征是不夠的。隧道工程的地震波在全三維環境條件下傳播,這種條件比地面上的平面半無限空間條件復雜得多,而且隧道內地震波的接收與激發測線與探測目的是近于垂直或者大角度相交的條件,因此影響在地質構造面上獲得大長度大面積的地震波信息量。針對這種狀況,預報工作僅僅利用單一模態的地震波難以勝任。因此,TGP系統強化采集地震波的多波列信息,綜合利用地震波的多波列震相信息,因此TGP系統的功能得到明顯的增強。
TGP隧道地質超前預報系統包括儀器設備和處理軟件兩大部分。其中儀器設備有TGP型儀器主機、接收傳感器、孔中定位安裝工具和電纜等。圖(3)是TGP隧道地質超前預報系統的主機。其處理軟件由地震波數據輸入與編排、空間坐標建立、能量均衡、干擾波分析與去除、觸發時差校正、譜分析、縱橫波分離、巖體速度參數計算、回波提取與偏移圖、有效波分析與衰減參數計算、極化波處理與構造產狀圖、綜合分析與繪制成果圖等模塊組成。
轉貼于
工程應用中,TGP型隧道地質預報系統對于500多米距離的構造面具有清楚的地震反射波信息,說明儀器系統具有足夠的信噪比。實際工作中考慮預報距離和分辨精度兩方面要求,預報距離一般采用150米至200米。TGP型隧道地質預報系統具有登記全部測長距離內地質構造信息的功能,利用逐次遞進的位置相關分析,和源生成果對比等處理功能,有利于去偽存真和排除異常,提高預報成果的質量。該系統2005年8月通過由國內知名隧道、地質、物探專家組成的專家組評審鑒定。專家們一致認為“TGP12儀器與相關的處理系統,性能穩定可靠,采集的波形完整,信噪比高,與國外同類儀器對比整體上具有國際先進水平,可替代進口產品。”具體評審意見如下:
1、TGP12是集信號放大,模數轉換,數據采集、存儲和控制為一體的密封防水防震的物探設備;優于利用微機裝配式結構的儀器,TGP12適合在惡劣的隧道環境中使用。
2、TGP12的三分量速度型檢波器具有高靈敏度,指向性強和較寬的頻帶響應等特點,因而拾取的地震波信號具有高的質量品質。TGP12孔中接收檢波器采用黃油耦合,方便、經濟、快捷。優于在鉆孔中需要錨固異型鋼導管的方式。2米長的鋼導管難于攜帶、運輸,價格昂貴,一次性使用,費事費工費財。
3、TGP12的地震波采集觸發是開路觸發方式,即信號線在雷管引爆炸藥的同時被炸斷,信號線同時開路觸發儀器采集,儀器采集無延時差,保證定位的準確性。超前預報儀器若采用起爆器電脈沖同時觸發電雷管和觸發主機采集的方案,由于電雷管起爆的延時時間難于做到一致,因此會造成儀器采集的走時誤差,這種觸發方式在我國的地震波勘探規程中明確規定不宜使用,更何況隧道巖體的速度比覆蓋層介質的速度高出幾倍以上,以巖體波速4500m/s~ 5500m/s為例計算,每一毫秒誤差會造成2~3m的預報距離誤差,一般瞬發電雷管的延時誤差不止一毫秒,因此由20多次激發的平均線計算隧道巖體速度,和利用存在誤差的時間計算距離,兩次誤差的乘積造成的誤差不容忽視。
4、TGPWIN隧道地震波處理分析軟件借鑒了已有相關軟件的長處,并充分考慮彈性波在三維空間的傳播特點,以及根據TGP儀器采集的數據格式編寫。功能特點如下:
(1)全中文界面,通俗易懂,對地震波信號的處理過程,直觀、方便,具有友好的人機操作界面。
(2)對P波、SH波、和SV波的分離完善合理,這是超前地質預報數據處理的關鍵工作之一。
(3)處理軟件具有相關部分互相檢查的功能,例如點擊偏移歸位成果圖上的反射界面位置,程序會轉到該位置界面的反射波組位置,通過分析反射波組的連續性、反射波的極性和能量,確定偏移成果的可靠性和性質。有助于去偽存真,由此及彼,由表及里,深化認識,使預報結論科學可靠。
(4)TGPWIN處理中有自動處理方式,也有手動處理方式,有深入分析異??煽砍潭鹊淖粉櫣δ埽@樣設計既適應非物探專業的普通工程技術人員使用,又適應物探專業人員分析地震波傳播特性,對復雜地質條件進行深入研究工作的需要。
5、TGP12系統只要增加不多的配套附件和軟件模塊,就可以增加儀器用于隧道檢測的其它功能,例如:對已襯砌的隧道進行襯砌脫空檢測,檢查隧道圍巖中隱蔽的病害(巖溶)。也可以在掌子面上用錘擊的激發方式做到短距離更為精確的地質預報,因而它是一機多能的設備。
TGP12的性價比與國外同類儀器相比具有明顯的優勢。而且研發、生產在國內,用戶可以獲得及時周到的技術服務和技術支持,以及儀器維修等方面的方便性。
三、工程應用實例
宜萬鐵路涼風亞隧道的巖性為灰巖, TGP12型儀器與進口TSP203儀器進行了同點試驗,預報成果如下,見圖(4)、圖(5)。
Abstract: Due to many advantages in the municipal construction, the pipe technology is widely used. This paper introduces the construction characteristics of pipe technology, based on this, it mainly analyzes the application of pipe technology in the construction of municipal engineering, and discusses its problems, which has a certain reference for further improving the quality of pipe construction.
關鍵詞:頂管技術;市政工程;應用;施工工序
Key words: pipe technology;municipal engineering;application;construction process
0 引言
地下管網是城市基礎設施的重要組成部分,日夜肩負著傳送信息和能量的重要任務。為城市處理污水的系統、自來水、煤氣、電力和通訊設施等等都屬于地下管網之內,要對上述市政設施進行改建、新建、擴建,需要工程技術人員進行安全的管道安裝。傳統的挖槽埋管地下管線施工技術由于對地面交通影響較大,使本來就擁擠繁忙的城市交通如同雪上加霜,同時給市民工作、生活帶來許多不便,特別在人口稠密的城市和交通擁擠的地區以及不允許開挖的地段,這個矛盾就更加突出。市政工程如何使這些安裝工程對城市的影響減至最小,如何盡可能減少對人們日常生活的影響。已經成了一個迫切解決的問題。
非開挖技術將完全能解決這些難題,提供安全及經濟的施工方法。非開挖技術是指利用少開挖和不開挖技術來進行地下管線的鋪設或更換的工藝。頂管技術就是在這種情況下發展起來的一種非開挖技術,其在國外已廣泛使用,在國內也已逐漸普及。隨著頂管技術在市政工程的廣泛運用,本論文主要討論在頂管作業施工過程中出現了一些具體的技術問題,值得施工技術人員重視,并以此和同行共享。
1 頂管施工的特點
頂管法又稱為非開挖管道敷設技術,它具有不需要開挖面層,就能穿越地面構筑物和地下管線吸公路、鐵路、河道的特點,相比開挖敷設技術,投資和工期將大大節省。同時,頂管施工技術可以降低噪音,減少粉塵,減輕對城區的交通條件和環境狀況的干擾和破壞,屬于真正的無污染、高效率的施工技術。頂管施工法由于其上述多方面的優點,在市政工程中尤其是在市政管線工程中得到了廣泛地應用。概括起來,頂管施工技術具有幾大方面的優點:施工面由線縮成點,占地面積??;地面活動不受施工影響,對交通干擾小;噪音和震動低,城市中施工對居民生活環境干擾小,不影響現有管線及構筑物的使用;可以在很深的地下或水下敷設管道,可以安全穿越鐵路、公路、河流、建筑物,減少沿線的拆遷工作量,降低工程造價。
2 頂管技術施工應用分析
2.1 頂進管的選擇 頂進管一般選用鋼筋砼管,如沒有腐蝕要求可選用鋼管。鋼筋砼管的規格設計、配筋和應力驗算應遵守有關鋼筋砼的標準和技術規程,特別是有關鋼筋砼管的標準和技術規程。①頂進管直徑的選擇:頂進管的直徑選擇是首先根據工程性質、工程需要確定內徑,根據頂進管所受荷載確定砼管的配筋及壁厚,進而確定外徑。因為頂管工程工作面上需要配備挖土工人,所以一般管內徑不小于500mm;②頂進管長度的選擇:頂進管的長度對頂管過程的可控性和經濟性有很大的影響。在直線推頂的情況下使用長管可以減少裝管的次數,取得良好的效果,但隨著管長度的增長,如果偏離原定的路線,使之恢復正確路線要比使用短管更加困難。建造頂壓坑時頂壓坑的長度也要增大,挖坑、支護、回填、修復的費用將相應地增加。
一般情況下,管長度須相對于管徑來衡量,當L/D外≤1.10時,為短管;當L/D外=1.15時,為標準管;當IJD外≥2.10時為長管。
2.2 頂管施工的前期準備 ①現場平面布置:平面總體布置包括起重設備、自動控制室、料具間、管片堆場、拌漿棚及拌漿材料堆場、注水系統、棄土坑的布置等。始發工作井內安裝發射架、頂管機、前頂鐵、主推千斤頂、反力架等頂進設備,工作井邊側設置下井扶梯供施工人員上下;②頂管機進、出洞處以及后靠土體加固:為確保頂管機出洞的絕對安全,需對后靠土體及進、出洞區域土體進行高壓旋噴樁加固。為防止頂管機進、出預留洞導致泥水流失,并確保在頂進過程中壓注的觸變泥漿不流失,必須在工作井安裝止水裝置。
2.3 頂管施工的工藝:頂管施 叉稱為頂進法施工,是指利用頂進設備將預制成橢圓形或圓形構造物逐漸頂入路基,以構成立體交義通道或涵洞的施工方法。頂管施工需先在確定的管段之間設置工作井和接收井,然后在工作井內安裝推力設備將導軌上的頂管機頭推入土體,由機頭導向,將預制的鋼筋混凝土管向前頂進,前端土體通過工作井運出,最后完成管道鋪設。
2.3.1 頂管井的設計:頂管井分工作井與接收井兩種,頂管井的建造結構有很多種類,一般使用鋼筋混凝土結構。工作井的結構形式通常有單孔井和單排孔井。前者形狀有圓形、正方形、矩形等,后者則大多為矩形,它們的結構受力性能由高至低依次為圓形一正方形一矩形。
2.3.2 頂管施工工序 ①穿墻:打開穿墻悶板將工具管頂出井外,并安裝穿墻止水裝置,主要技術施工措施1)穿墻管內填夯壓密實的紙筋粘土或低強度水泥粘土拌和土,以起到臨時性阻水擋土作用;2)為確保穿墻孔外側一定范圍內土體基本穩定并有足夠強度,工作井工具管穿墻前,對穿墻管外側采取注漿固結措施;3)穿墻前對可能出現的問題進行分析并制定相應處理措施;4)悶板開啟后迅速推進工具管,同時做好穿墻止水,本工程采用止水法蘭加壓板,中間安入20mm厚的天然優質橡膠止水板環,要求具有較高的拉伸率和耐磨性,借助管道頂進帶動安裝好的橡膠板形成逆向止水裝置,應防止因穿墻管外側的土體暴露時間過長而產生擾動流變。②頂管出洞:頂管出洞是頂管作業中一個很值得注意的問題,頂管出洞,即頂管機和第一節管子從工作井中破出洞口封門進入土中。開始正常頂管前的過程,是頂管技術中的關鍵工序,也是容易發生事故的工序。為防止管線出現偏斜,應采取工具管調零,在工具管下的井壁上加設支撐,若發現下跌立即用主頂油缸進行糾偏,工具管出洞前預先設定一個初始角彌補下跌等措施。③注漿減阻:在頂管施工中還有一個重要的技術措施就是通過壓注觸變泥漿填充管道周圍的空隙,形成一道泥漿保護套,起到支撐地層,減少地面沉降,減少頂進阻力的作用。在施工中,首先對頂管機頭尾部壓漿,并要與頂進工作同步,然后在中續間和混凝土管道的適當位置進行跟蹤補漿,以補充在頂進中的泥漿損失。注漿工序一般多應用于長距離頂管施工中。④頂管糾偏:糾偏是指機頭偏離設計軸線后,利用設置在后部的糾偏千斤頂組,改變機頭端面的方向,減少偏差,使管道沿設計軸線頂迸。頂進糾偏是采用調整4臺糾偏千斤頂組方法,進行糾偏操作,若管道偏左則千斤頂采用左伸右縮,反之亦然。
3 膨潤土懸浮液在疏松土層中的應用
在無粘性的疏松土層中以及在粘性很小的土壤中,例如在砂礫土中,若不采取其它輔助措施,土層由于本身極不穩定,以致在刃腳推進之后立刻就會坍落在管壁上。所以對這類土壤來說,膨潤土懸浮液的支承作用尤其具有重要意義。為了起到這種支承作用,先決條件是要盡可能準確地掌握膨潤土懸浮漓在砂礫上中的特性。膨潤上懸浮液將滲人土層的孔隙內,充滿孔隙,并繼續在其中流動。流速取決于孔隙的橫斷面與懸浮液的流變特性,同時也取決于壓漿壓力。因此為了在同樣的壓漿壓力下達剄相同的滲入深度,在孔隙橫斷面很小的細粒土層中便需要低流限的懸浮液,面孔隙橫斷面較大的粒粒土層則需要高流限的懸浮液。在克服流動阻力的過程中,壓漿壓力隨著滲入深度的增加而成比例地衰減,所以相應每一種壓漿壓力,都有一個完全確定的滲入深度。
盡管就某種場合來說,隨著管子的推進同時在管子整個圓周上和管路全部長度上均勻地壓漿證明是相宜的,而在另一些場合下,正確的方法則又可能是分段壓漿。例如現已得知,在管子下半部,膨潤土在頂進過程中比靜止狀態下更容易流出,而上半部的壓漿則是在管路靜止的情況下更容易進行。因此最好是將管子下半都的注漿孔和上半部的注漿孔分別組合起來。這種半側壓出韻原因在于,靜止狀態的管道以其全部很大的重量沉落于底部。這樣便在管道的頂部形成了小空隙,或者至少是形成了一個壓力較低的區域。因而在這種狀態下,膨瀾土在管頂處比在管底部更容易流出。反之,在頂壓力和浮力同時作用下,管道有向上拱起的傾向。這時管道離地升起,于是管底下方便形成了一個低壓區,致使膨潤土更加容易滲入其中并均勻地散開。
4 頂進管在膨潤土懸浮浪中受到的浮力
只要頂進管在整個圓周上被膨潤土懸浮液所包圍,浮力定律便對它有效,即使懸浮液層的厚度很小也同樣如此。在鋼筋混凝土管情況下,浮力均為管子自重的1.4倍。這樣,只要通過正確地壓人膨潤土懸浮液,從而在土層中圍繞頂進管形成一個支承環帶,并保持懸浮液壓力等于土壓力,于是管子就會在膨潤土懸浮液中漂浮起來。為此必需的前提在于懸浮液應是液體狀態的,亦即呈現為表觀流限相應較低的溶膠狀態。在懸浮液的膨潤土含量低到接近運動狀態下的穩定極限時,這個條件便能得到滿足。浮力可使管外璧摩阻力減小,因為管底部由于自重產生的法向力減少了。這一效果首先會對大直徑管子的長距離推頂產生有利的影響
5 結語
頂管設計在市政工程中,特別是深覆土大管徑的管道工程和交通繁忙的城市主干道改造工程設計中顯得尤為重要。在特定工程條件下,相對與開槽埋管更具優越性。時代要前進,城市要發展。市政設施配套完善,地下各種管道建設將會大量增加,頂管設計和施工也會增多。管徑加大,長度加長,有直有曲,種類繁多,這將是今后大城市頂管施工的發展趨勢。因此,我們要重視這個良機,進一步地完善和提高我們的頂管設計和施工技術,使之綜合施工技術達到國際水平。
參考文獻:
[1]廖霞柳.洛河電廠取水工程頂管施工質量控制分析[J].安徽水利水電職業技術學院學報,2010,(01):13-14,17.
鄧雅婷.地下建筑與工程專業揭密及院校介紹[J].高校招生,2002,(07) :58;學校學報,2010,(01):23-24,37.
張振宇.盾構法施工技術在我國的應用與發展[J].武漢工程職業技術學院學報,2005,(04):26-28,36.
論文摘要:隧道工程是鐵路、公路和水利水電等大型項目中的重要工程,因地質條件不明造成隧道施工事故的危害是巨大的,加強隧道施工地質超前預報工作是非常必要的。國內外對隧道地震波超前預報技術已研究多年,筆者就這方面的現狀及進行了討論,指出了TSP儀器技術存在的不足,闡述了克服盲目性、提高科學預報的重要性,介紹了新開發的TGP隧道地震波預報系統與技術及應用效果。
隨著我國基本建設規模的擴大,隧道工程已經成為鐵路、公路和水利水電等大型項目中的重要工程。隧道工程的重要性越來越顯著,隧道工程的數量和長度明顯增加,規模不斷擴大。因此隧道工程的安全施工和貫通,是不可回避重要任務和技術難題。危及隧道工程施工的地質病害大致分為三類:1不良工程地質條件,諸如巖體的裂隙發育密集帶、構造破碎帶、巖溶發育帶、以及人工采礦造成的不良地質條件和高地應力造成的危害等;2不良水文地質條件,諸如巖溶水、構造和裂隙水等;3不良環境條件,諸如有毒有害氣體和強放射性的環境。對于以上地質問題,在隧道工程的勘察設計階段,已經投入大量的地質勘察工作,但是由于地質、地形條件的復雜性和相應勘察技術的現狀水平,以及時間、經費等條件的限制,勘察階段的地質資料一般難于達到施工階段的精度要求。國內外因地質條件不明造成隧道施工事故的教訓是不少的,例如:日本越新干線中山隧道涌水淹沒事件;前蘇聯貝加爾—阿穆爾干線上某隧道的突水事件;我國成昆線、大秦線、衡廣復線建設中,因地質問題的停工時間約占到1/3;以及不久前發生的四川某隧道瓦斯爆炸,造成重大事故和人員傷亡。以上隧道施工事故的危害是巨大的,因此強調加強隧道施工地質超前預報工作是非常必要的。
我國隧道地震波超前預報技術的研究起始于上個世紀的90年代,鐵道部第一勘測設計院物探隊提出“負視速度方法”。鐵道部第一勘測設計院是較早研究隧道地震超前預報的單位。他們在1992年7月,利用地震反射波方法對云臺山隧道進行隧道超前預報,預報成果與開挖后的隧道左壁“破碎帶”和“斷層”的位置基本一致。從上個世紀90年代初開始,我國物探技術人員一直沒有停止對隧道地震超前預報技術的研究。曾昭璜(1994)研究利用多波進行反演的“負視速度法”,這種方法利用來自掌子面前方的縱波、橫波、轉換波的反射震相在隧道垂直地震剖面上所產生的負視速度同相軸來反演反射界面的空間位置與產狀。北方交通大學的陳立成等人(1994)從全波震相分析理論和技術的角度研究隧道前方界面多波層析成像問題,進行隧道超前預報。他們的研究成果在頡河隧道、老爺嶺隧道地質預報中應用,取得預期的效果。該方法的工作原理是以地震反射波方法為基礎。工作中他們根據嫻熟的地震反射波技術進行數據采集和數據解釋,當時沒有開發出針對隧道地震預報的處理系統,同時受當時條件所限制,該項技術未能得到進一步深入研究和發展。
1995年左右鐵道部下屬單位引進瑞士“TSP202”隧道地震波超前預報的儀器,當時曾組織系統內有關地質和物探專家在隧道工點進行了試驗,未見明顯的效果,認為其技術與“負視速度方法”基本一致,對其處理解釋系統爭議較大、認識褒貶不一,試驗工作無果而終,該設備技術的消化工作也就擱置了。時隔7年后,隧道安全施工要求進行地質預報,該儀器設備由鐵路系統的工程局又開始第二次引進,并直接用于隧道施工的預報工作??梢哉f由于第一次引進消化工作不深入,造成第二次引進后出現:應用工作中的盲目性和簡單化,以及其他一些不正常現象。在宜萬鐵路隧道施工中不斷出現的問題,使人們開始反思,不少論文也提出了存在的問題,鐵道部也下發文件要求科學地進行超前預報??梢哉f短短幾年的應用實踐,人們仍然在探索著地質預報技術的進步。
隧道地震波超前預報屬于物探技術,但比地面的地震波物探技術復雜,我國的地質物探工作者一直沒有放松該技術的研究工作。北京市水電物探研究所研究地震波勘察檢測技術已經有近20年的歷史,并且是多道瞬態面波勘察技術的發明單位,生產的SWS型工程勘察與工程檢測儀器系統,已經為400多家勘察設計、高等院所廣泛應用,并且出口日本等國家。2003年該所投入人力物力研究隧道地震波預報技術,研究TGP12型隧道地質超前預報儀器,以及孔中高靈敏度三分量檢波設備,方便的孔中耦合技術,和Windows編程的數據處理軟件系統。在經過大量的預報實踐驗證后,于2005年通過了由國家隧道中心王夢恕院士組織的國內著名隧道專家的評審鑒定。該儀器系統推向市場不到2年的時間,已經有近20臺套投入到隧道超前地質預報工作中應用,反饋信息普遍受到用戶的好評。
鐵道部工程設計鑒定中心趙勇主編的《高速鐵路隧道》一書,提出隧道地質超前預報的方法有以下部分組成:①地質分析、②超前平行導坑預報法、③超前水平鉆孔法、④物理探測法。并闡述物理探測法與地質分析法、超前平行導坑預報法、超前水平鉆孔法相結合,解決不同地質災害的應用原則。書中介紹了國產TGP隧道地震波預報系統,聲波反射方法,地質雷達方法,紅外探水方法等。
本文就隧道地震波預報技術中的若干關鍵問題,并結合應用中的實際問題闡述如下,目的在于引起同行們討論,促進地震波預報技術理論水平的提高,促進采集數據質量的提高,促進資料的解釋推斷工作向合理化方向發展。
一、隧道地震波方法的預報原理
隧道地震預報工作利用地震反射波原理,在隧道內以排列方式激發的地震波,向三維空間傳播的過程中,遇到聲阻抗界面會產生反射波。聲阻抗是介質傳播彈性波的速度與介質密度的函數,介質的聲阻抗數值為速度與密度的乘積。因此地層中的巖性變化界面、構造破碎帶、巖溶和巖溶發育帶等界面會產生地震反射波,這種反射波被布置在隧道內的檢波器接收,輸入到儀器中進行信號的放大、數字采集和處理,實現地質預報的目的。
由此可以看出,隧道地震波預報技術是通過直接探查聲阻抗變化的界面,經過人工分析實現間接推斷地質病害的方法。
圖(2)不同夾角構造界面的地震波路徑與反射波記錄形態
圖(1)示意與隧道斜交的構造面,其地震波傳播的路徑圖,構造面上的地震波反射點在白色園內。圖(2)示意不同夾角構造面的地震波路徑與反射波記錄形態,與隧道夾角不同的構造面其反射點位置不同,地震波傳播路徑偏離隧道軸線也不同。構造面與隧道正交時地震波傳播路徑與隧道軸線平行,右圖為與隧道正交構造面產生的地震反射波記錄,根據反射波同相軸計算得到界面與檢波點之間巖體的地震波速度,該速度代表隧道圍巖的性質。由非正交條件下地震反射波記錄獲得的速度為地震波傳播路徑巖體的“視速度”,“視速度”值的大小不僅與路徑上巖體的性質有關,而且與界面和隧道的夾角有關。應用地震波預報構造面位置的計算是利用地震波在炮孔段的傳播速度,各構造面之間巖體的速度是綜合界面反射獲得的“估算速度”,不是隧道圍巖的真速度,應用中結合反射點偏離隧道軸線距離的遠近和巖體的各項異性分布綜合考慮使用。
圖(2)是理想模式的三份量地震波時距曲線形態。實際工作中采集的地震波是錯綜復雜的,理想模式的地震波是不常存在的,記錄上普遍存在有來自三維空間中多個方向的反射波,和各種形式的干擾波,這是應用技術中首先考慮的問題。
針對隧道地震波傳播的復雜性,TGP地震預報系統不僅利用地震反射波走時關系,同時采集空間地震波三分量記錄,進行地震波的極化分析與計算,該技術的突破有利于地質構造面產狀、規模和地質體性質的預報。
二、TGP隧道地質超前預報系統
隧道地震波預報的早期研究,是由研究和利用地震波在時間空間域中的運動學特征開始的,工作中認識到僅僅利用地震波運動學和動力學特征是不夠的。隧道工程的地震波在全三維環境條件下傳播,這種條件比地面上的平面半無限空間條件復雜得多,而且隧道內地震波的接收與激發測線與探測目的是近于垂直或者大角度相交的條件,因此影響在地質構造面上獲得大長度大面積的地震波信息量。針對這種狀況,預報工作僅僅利用單一模態的地震波難以勝任。因此,TGP系統強化采集地震波的多波列信息,綜合利用地震波的多波列震相信息,因此TGP系統的功能得到明顯的增強。
TGP隧道地質超前預報系統包括儀器設備和處理軟件兩大部分。其中儀器設備有TGP型儀器主機、接收傳感器、孔中定位安裝工具和電纜等。圖(3)是TGP隧道地質超前預報系統的主機。其處理軟件由地震波數據輸入與編排、空間坐標建立、能量均衡、干擾波分析與去除、觸發時差校正、譜分析、縱橫波分離、巖體速度參數計算、回波提取與偏移圖、有效波分析與衰減參數計算、極化波處理與構造產狀圖、綜合分析與繪制成果圖等模塊組成。
工程應用中,TGP型隧道地質預報系統對于500多米距離的構造面具有清楚的地震反射波信息,說明儀器系統具有足夠的信噪比。實際工作中考慮預報距離和分辨精度兩方面要求,預報距離一般采用150米至200米。TGP型隧道地質預報系統具有登記全部測長距離內地質構造信息的功能,利用逐次遞進的位置相關分析,和源生成果對比等處理功能,有利于去偽存真和排除異常,提高預報成果的質量。該系統2005年8月通過由國內知名隧道、地質、物探專家組成的專家組評審鑒定。專家們一致認為“TGP12儀器與相關的處理系統,性能穩定可靠,采集的波形完整,信噪比高,與國外同類儀器對比整體上具有國際先進水平,可替代進口產品。”具體評審意見如下:
1、TGP12是集信號放大,模數轉換,數據采集、存儲和控制為一體的密封防水防震的物探設備;優于利用微機裝配式結構的儀器,TGP12適合在惡劣的隧道環境中使用。
2、TGP12的三分量速度型檢波器具有高靈敏度,指向性強和較寬的頻帶響應等特點,因而拾取的地震波信號具有高的質量品質。TGP12孔中接收檢波器采用黃油耦合,方便、經濟、快捷。優于在鉆孔中需要錨固異型鋼導管的方式。2米長的鋼導管難于攜帶、運輸,價格昂貴,一次性使用,費事費工費財。
3、TGP12的地震波采集觸發是開路觸發方式,即信號線在雷管引爆炸藥的同時被炸斷,信號線同時開路觸發儀器采集,儀器采集無延時差,保證定位的準確性。超前預報儀器若采用起爆器電脈沖同時觸發電雷管和觸發主機采集的方案,由于電雷管起爆的延時時間難于做到一致,因此會造成儀器采集的走時誤差,這種觸發方式在我國的地震波勘探規程中明確規定不宜使用,更何況隧道巖體的速度比覆蓋層介質的速度高出幾倍以上,以巖體波速4500m/s~5500m/s為例計算,每一毫秒誤差會造成2~3m的預報距離誤差,一般瞬發電雷管的延時誤差不止一毫秒,因此由20多次激發的平均線計算隧道巖體速度,和利用存在誤差的時間計算距離,兩次誤差的乘積造成的誤差不容忽視。
4、TGPWIN隧道地震波處理分析軟件借鑒了已有相關軟件的長處,并充分考慮彈性波在三維空間的傳播特點,以及根據TGP儀器采集的數據格式編寫。功能特點如下:
(1)全中文界面,通俗易懂,對地震波信號的處理過程,直觀、方便,具有友好的人機操作界面。
(2)對P波、SH波、和SV波的分離完善合理,這是超前地質預報數據處理的關鍵工作之一。
(3)處理軟件具有相關部分互相檢查的功能,例如點擊偏移歸位成果圖上的反射界面位置,程序會轉到該位置界面的反射波組位置,通過分析反射波組的連續性、反射波的極性和能量,確定偏移成果的可靠性和性質。有助于去偽存真,由此及彼,由表及里,深化認識,使預報結論科學可靠。
(4)TGPWIN處理中有自動處理方式,也有手動處理方式,有深入分析異常可靠程度的追蹤功能,這樣設計既適應非物探專業的普通工程技術人員使用,又適應物探專業人員分析地震波傳播特性,對復雜地質條件進行深入研究工作的需要。
5、TGP12系統只要增加不多的配套附件和軟件模塊,就可以增加儀器用于隧道檢測的其它功能,例如:對已襯砌的隧道進行襯砌脫空檢測,檢查隧道圍巖中隱蔽的病害(巖溶)。也可以在掌子面上用錘擊的激發方式做到短距離更為精確的地質預報,因而它是一機多能的設備。
TGP12的性價比與國外同類儀器相比具有明顯的優勢。而且研發、生產在國內,用戶可以獲得及時周到的技術服務和技術支持,以及儀器維修等方面的方便性。
三、工程應用實例
宜萬鐵路涼風亞隧道的巖性為灰巖,TGP12型儀器與進口TSP203儀器進行了同點試驗,預報成果如下,見圖(4)、圖(5)。
由以上成果圖可以看出:在DK53+322—DK53+346;DK53+370—DK53+380;DK53+390—DK53+420三處存在構造異常,其中DK53+322—DK53+346、DK53+370—DK53+380兩處的Vsh波比Vp波反射幅度大,推斷以上兩處構造帶存在有充水或巖溶發育的可能性、。此結論經過日后的隧道開挖證明完全正確。在隧道施工的《變更設計建議書》中結論:“在隧道左壁的DK53+322段發現巖溶,溶蝕帶寬度為2.5米,溶蝕帶穿過隧道拱頂至右壁的DK53+340米段,并向邊墻外延伸,雨后DK53+322處溶洞有較大水量流出,DK53+339處溶洞有少量滲水。該段圍巖較破碎,節理發育,受溶洞影響,拱頂巖層出現楔體破壞、掉塊”。
TGP12型隧道地質預報系統在云南水富高速公路冷水溪隧道,宜萬鐵路王家嶺隧道、涼風埡隧道,青島海濱高速仰口隧道,重慶地區數條公路隧道,以及武廣客運專線大瑤山隧道等工程使用,獲得滿意的預報效果。
1、隧道地震波超前預報的概念解釋
隧道地震波超前預報技術翻譯成英語是“TunnelSeismicPrediction”,簡稱“TSP”。在我國《客運專線鐵路隧道施工技術指南》的第5.0.8條使用了“TSP”縮寫詞。一般規程中使用縮寫英語字母表示某種技術是正常的事情,但是在隧道地質超前預報工作中卻出現被歪曲利用的現象,把“TSP技術”歪曲解釋成“TSP***儀器”。這種現象對隧道超前預報技術的應用,造成了不良的影響。在有的地方和部門的隧道施工招標和設備招標工作文件中也存在把“TSP技術”歪曲解釋成“TSP***儀器”的現象,這是對隧道地震波預報技術缺乏科學認識。
因此,正確認識:“TSP技術”即隧道地震波超前預報技術,有益于正確執行我國的現行隧道規程規范和法規,有益于隧道工程的招投標工作,有益于隧道地震波預報技術的進步,有益于誠實誠信的預報技術服務。
2、隧道地震波預報中的接收與激發問題
在隧道地震預報工作中,有的采用把接收與激置在隧道的洞壁上,這種做法不妥當。眾所周知,洞壁的表面波傳播較強,對地震反射波會形成不容忽視的干擾。同時鉆爆施工影響洞壁巖體松動,局部超欠挖使得洞壁巖體不平整和完整性差,接收檢波器和激發點受局部巖體影響大,地震波的傳播和衰減比較復雜,嚴重影響地震波記錄的一致性,大大降低有效波的信噪比。因此不宜采取在洞壁激發與接收的做法。
有關
在洞壁激發和接收中面波的干擾問題,原清華大學聲學教研室的沈建國教授曾經作過物理模型試驗,見圖(6)。模型設計在隧道前方有一個溶洞,洞徑與隧道斷面相當,分別在洞壁的4個深度布置接收排列。
圖(7)是洞壁采集的地震波記錄,圖(8)是在洞壁一定深度內采集的地震波記錄。圖中:藍色直線Vp表示直達縱波;藍色曲線Vp1表示溶洞的反射縱波;紅色直線Vr的后面表示面波。由圖(7)與圖(8)對照可以看到:圖(7)面波Vr幅度強,溶洞的反射波無法分辨;圖(8)的面波Vr幅度大大減弱,溶洞的反射波較清晰的表現出來。這個模型試驗的結果明確說明面波的干擾在鉆孔一定深度呈現減弱的趨勢。因此,在隧道地震波超前預報檢測工作中,采取孔中激發和接收技術措施壓制面波非常必要,是提高反射回波記錄信噪比質量的重要環節。
TGP隧道地震波預報系統的接收和激發,結合現場施工的方便性,要求鉆孔的深度為2.0米。鉆孔中采用炸藥爆炸產生震源,控制使用小藥量炸藥,在有條件的地方盡量使用高爆速炸藥,同時在孔中充水的條件下爆炸。在充水的條件下爆炸有以下好處:易于產生高頻地震波,提高分辨率;同時爆炸泄放到隧道內的爆炸聲音小,減弱隧道管波的干擾能量;爆炸時水由孔中噴出的過程有益于產生水平偏振,加強橫波的能量,有利于地震預報工作中實現采集高質量的多波信息,實現多波多參數的預報目的。鉆孔中接收,采用具有高指向性和高靈敏度的三分量接收探頭安置在鉆孔的底部,通過耦合劑實現與鉆孔壁的直接接觸,檢波器信號輸出采用軟電纜,和采用吸聲軟材料封堵鉆孔口等措施,對于高保真地接收地震有效波信號,減少產生干擾波環節等方面很有益處。
3、隧道地震波預報中的干擾波
在隧道地震波采集過程中,存在著多種干擾波,對此必須有明確地認識。例如:對頭隧道施工和鄰洞施工的干擾波;地表地形和來自其他方向的反射波干擾;洞內電磁波干擾;以及接收裝置設計不當產生的干擾波等等。正確認識干擾波和產生的原因,才會采取正確的措施獲得高質量的現場地震波記錄。下面重點討論隧道管波的干擾問題。
隧道管波由激發孔爆炸時聲波泄放到隧道中產生,被接收傳感器接收造成對記錄的干擾,見圖9。
圖中地震記錄50毫秒以下出現的呈斜線“黑點”,在右圖中斜線用“紫線”表示,由記錄上的時距線計算“紫線”表示的速度為340m/s,該線以下的波(左半圖中黑色部分)為空氣中傳播的聲波,我定義這種波為“隧道管波”,“隧道管波”出現后覆蓋其后出現的地震反射波?!八淼拦懿ā狈鹊拇笮∨c激發和接收條件有關,“隧道管波”在地震記錄上出現的位置與采集偏移距離有關。該紫色線位置為偏移距離為20m的“隧道管波”出現位置。圖中藍色線表示速度為4500m/s的前行縱波和反射縱波,紅色線表示速度為2500m/s的前行橫波和反射橫波。上部的藍色線Vp和紅色線Vs分別表示由震源向前傳播的直達縱波與橫波。下部的多條藍色線Vp100、Vp150、Vp200分別表示掌子面前方100米、150米、200米距離處構造面的反射縱波,多條紅色線Vs100、Vs150分別表示掌子面前方100米、150米距離處構造面的反射橫波。由圖看出有30%地震道的反射縱波和50%以上地震道的反射橫波淹沒在“隧道管波”的干擾中。如果隧道圍巖的縱波速度低于4500米/秒、橫波速度低于2500米/秒,將會有更多的地震道淹沒在“隧道管波”的干擾中,其中影響橫波的程度更為嚴重,這種現象嚴重影響縱、橫波雙參數預報。
我提出隧道管波的嚴重干擾問題,希望引起足夠的重視,加強地震波檢測理論的學習,克服對有效波和干擾波不加區分,盲目按照流程進行處理的做法,才可以糾正成果中以夾雜干擾波假象進行預報的局面。
在京西梨園嶺隧道TGP206與TSP200在同一次預報中進行試驗對比,發現TSP200儀器采集的記錄中有嚴重的隧道管波,TGP206儀器采集的記錄中無隧道管波。兩臺儀器工作中使用同一批24炮震源和在同一位置接收,采集的地震波記錄出現如此之大的區別,關鍵在TSP200儀器的接收裝置設計不合理。我分析過近百個TSP203與TSP200儀器采集的記錄文件,記錄上普遍存在著“隧道管波”,檢查數據處理的過程中也未見對干擾波進行處理,而是作為地震反射波數據參與了處理,隧道管波干擾的假象混雜在預報成果圖中。近幾年,我看到的使用TSP203和TSP200資料發表的預報文章中,其現場采集的偏移距離(接收到最近激發炮之間的距離)普遍使用15米或者20米,炮孔之間的距離為1.5米至2米左右。在隧道管波干擾的情況下,這種布置采集的記錄見圖(9),記錄上的隧道管波是構成對有效波預報的嚴重干擾。我們對以如上參數采集的記錄作個初步的分析,假設巖體條件為完整的微風化硬巖,以巖體的縱波速度為4500米/秒,橫波速度為2500米/秒計算,未受隧道管波干擾的距離:縱波成果為120米左右,橫波成果為60米左右。以現行TSP200或者TSP203雙參數預報的做法評論,其未受隧道管波干擾的預報距離為60米左右。如果巖體條件降低,雙參數預報的距離還要大打折扣。如果按預報150米距離分析,其中有90米左右的距離中包含有隧道管波的假象資料。請有關使用者自己檢查已經處理過的文件,分析我的結論是否有道理。也不妨召開一個有代表性,而且能夠深度研究隧道地震波預報技術的會議,研討是否存在隧道管波干擾的問題和改進措施。
我提出一個不得已而為之的方法,供大家思考。根據各種波傳播路徑和速度差異的原理,即隧道管波在隧道內的空氣中傳播,其速度低,地震波在巖體中傳播其速度高,現場采用加大偏移距離進行預報數據的采集方法,利用巖體的地震波速度明顯高于空氣中聲波速度的條件,使隧道管波下移,延遲隧道管波在地震波記錄出現的時間,加大反射波接收的時間窗口,可以起到加大預報距離的目的。圖(10)下部標注有20、30、40的三條紫色線分別表示:偏移距離為20米、30米、40米情況下的隧道管波的出現位置。由圖可見,如果采用40米的偏移距離,隧道管波下移,反射波的時間窗口加大,在巖體為完整微風化硬巖的條件下,縱波反射基本上不受干預,橫波反射受影響的地震道約為30%。這種方法的不利點是偏移距離加大會影響到地震波頻率的降低和能量的衰減,但是權衡利弊,實現“隧道管波”下移的方法,避開隧道管波的干擾,無疑是一個不壞的辦法。
隧道管波在記錄上的幅度與激發泄放到隧道中的能量,以及接收裝置系統對隧道管波的壓制能力有關?!八淼拦懿ā碑a生的源頭在激發,在激發孔沒有注滿水、或激發孔太淺的條件下,激發能量會大量泄放到隧道內。因此,注意改善激發條件有利于減弱隧道管波的干擾。
有關是否可以采取濾波方式處理“隧道管波”的問題?!八淼拦懿ā钡念l率與激發條件、接收裝置條件、以及隧道圍巖的性質等有關系,也存在接收裝置系統在受震條件下產生次生震蕩波,綜合起來的干擾波比較復雜。通過濾波方式處理不宜實現濾除目的,如果采用的濾波參數不合理,還會產生改變地震波信息造成其它成果假象的可能性。
4、隧道埋深與預報距離
有一位從事海底隧道地震波超前預報的工程師向我詢問有關預報距離的問題,海底隧道在基巖和海底的沉積地層中穿過,如果基巖面的起伏較大,這一類情況與地面上的淺埋隧道一樣。在隧道地震超前預報中,海底地形界面和起伏的基巖面同樣是地震波的反射面,因此,地形界面和土石界面產生的反射波,與地質構造面產生的反射波均會被儀器接收并疊加在一起,造成地震波記錄復雜化。所以,在海底隧道或者淺埋隧道進行超前預報時,要綜合考慮上述影響,合理確定預報的距離。一般在無法剔除地形等界面反射波影響的條件下,控制預報距離小于隧道埋藏深度為宜,對于大于埋深的距離預報要慎重。
5、關于圍巖參數的預報問題
關于隧道圍巖參數的預報問題,應該明確兩個問題:一是地震波預報方法獲得圍巖參數的原理和作用;二是利用圍巖參數變更隧道圍巖級別的合理性。
地震波預報方法獲得的基本參數是縱波速度和橫波速度,其他參數均是由此計算得到的二級參數。利用地震波方法求取速度參數計算的過程中,速度數值與介質本身和反射界面的角度兩個變量有關系。在地震波預報求取速度的過程中,以測量段(炮孔段)巖體速度為基本參考值,計算中同時考慮巖體反射界面的反射幅度強弱作為計算因素,帶有相關比較的性質,因此得到的速度數值稱為估算速度,利用估算速度曲線的分布作為分析相鄰巖體的定性比較具有一定的合理性。但是,它既不是常規地震波勘探中的均方根速度,也不是巖體的真速度。
地質界面與隧道的關系,地質界面正交隧道軸線的情況應該說是個別的,普遍存在的應該是與隧道存在夾角的情況,因此普遍存在的是地震反射波路徑與隧道軸線不重合,地質界面與隧道的夾角越?。ㄒ哉粸?0度),地震波路徑與隧道軸線的夾角越大,即地震波路徑偏離隧道越遠。因此,利用地震反射波路徑方向上的速度代表隧道圍巖,存在不合理性,因為地質巖體具有的非均質、非連續和各向異性是不容忽視的。
在明確地震波預報獲取的速度含義以后,我們來分析利用該速度進行“隧道圍巖彈性波分級法”和變更隧道圍巖級別的問題?!八淼绹鷰r彈性波分級法”顧名思義,是隧道圍巖彈性波的一個分級方法,而不是隧道圍巖地質分級的全部??辈煸O計報告中圍巖級別的結論是綜合考慮:隧道通過地帶巖體的工程地質、水文地質、隧道埋深與地應力,以及隧道圍巖彈性波參數等多方面的資料做出的,僅僅利用預報獲得的巖體參數變更圍巖的級別存在著片面性。
舉例說明如下:圖(11)是TSP203儀器預報成果圖中的一部分,圖中上半部分三項參數的直方圖,由上而下為巖體分段的縱、橫波速度參數值;巖體的密度值;和巖體的彈性模量值。圖的下半部分為反射界面的分布圖。以圖中的反射界面線與隧道里程線的交點為序,統計反射界面與隧道軸線的夾角,匯總成表1。
序號
1
2
3
4
5
6
7
8
9
10
11
里程
2084
2092
2104
2108
2109
2116
2136
2152
2164
2184
2188
夾角
45°
75°
70°
65°
75°
80°
80°
70°
90°
70°
80°
以表1中最后兩個界面的里程和夾角,根據隧道地震反射波傳播理論,采用作圖方法,繪制的地震反射波的射線路經,分別見圖(12)。
上圖的預報距離為100米:圖中序號11的界面在2188里程,構造面與隧道夾角80°,其地震射線與隧道夾角10°~15°,反射段偏離隧道距離32~37米;圖中序號10界面在2184里程,構造面與隧道夾角70°,其地震射線與隧道夾角20°~30°,反射段偏離隧道距離49~59米。如果以正常預報距離150米計算,反射段偏離隧道的距離達到70~80米。地震波射線與隧道軸線方向不同,射線路經與隧道軸線也不具備重合條件,而且偏離隧道50至80米多米以外,這樣的速度資料作為隧道掌子面前方圍巖的速度不具備代表性,以此變更隧道圍巖的分級則更無道理。至于圖中提供的其他巖體動參數,例如:動彈性模量、動剪切模量、動泊松比和巖體密度值等參數,皆由巖體縱波和橫波速度計算而來,擺在報告中也就是一堆動參數。況且在沒有具體巖體動靜參數對比資料的基礎上,如何使用也存在問題。
我認為隧道地震波超前預報,應該是以預報地質災害和不良地質條件為主,以估算速度參數定性評價圍巖地質條件為輔的方法。
關鍵詞:橋梁工程 施工技術 基礎施工 懸臂施工
中圖分類號:TU74 文獻標識碼:A 文章編號:1672-3791(2013)04(c)-0066-04
1 工程概況
新建渝懷鐵路14標段下塘口烏江特大橋,全長703.95 m,橫跨烏江,中心里程為DK238+294,共有18個墩臺,橋跨布置為3×24 m預應力混凝土簡支梁+3×32 m預應力簡支梁+(72+128+72)m雙壁墩預應力混凝土連續剛構+6×32 m預應力混凝土簡支梁+2×24 m預應力混凝土簡支梁。7#墩、8#墩為主墩,雙壁式鋼筋混凝土圓端形實體墩,位于主航槽內,常年通航,鉆孔樁基礎,烏江水位在汛期暴漲暴落,水位變幅可達30~40 m,施工時受水位影響大,主墩基礎施工的最好時間為當年的11、12月份和來年的1、2、3月份,在一個枯水期內完成基礎是前期施工的重點。最高墩53 m;雙璧墩連續剛構梁體,箱梁頂寬11.0 m,箱寬6.3 m,梁高4.8~8.8 m,單箱單室箱梁,主跨為128m,這在我國雙線鐵路橋梁中屬跨度較大者,工藝相對復雜,技術標準高。9、10、11#墩為薄壁空心墩,墩高分別為48 m、43.5 m和28 m,其余墩均為實心墩,墩高為6~22 m??傇靸r約4400萬元,連續剛構梁體總造價2900萬元,平均82031元/m。2001年3月5日開工,計劃2003年9月全部完工。主要工程項目工期:主墩基礎2001年10月5日開工,2002年3月12日完工,主墩2002年3月13日開工,2002年9月6日完工,0#塊2002年9月7日開工,2002年12月25日完工,懸灌段2002年12月26日開工,2003年7月18日中跨合龍。
2 基礎施工技術
下塘口烏江特大橋4、5#墩、17#為臺明挖基礎,0#臺、1、2、3、6、14、15、16#墩為挖孔樁基礎,7、8#墩基礎原設計為嵌固樁基礎,樁為3 m×12 m矩形,每墩2樁,7#墩樁長16 m,8#墩樁長21 m,在7#墩樁基開挖施工過程中遇到基礎裂隙層,層厚30 cm,鉆孔查探發現,裂隙層范圍很大并伴有地下強承壓水,嵌固樁施工受阻,設計補勘后,進行了設計更正,將嵌固樁基礎更正為鉆孔樁基礎。9、10、11、12、13#墩為鉆孔樁基礎。4、5#墩和17#臺為明挖基礎。明挖基礎、挖孔樁基礎、鉆孔樁基礎施工為常規施工工藝,這里主要介紹8#墩基礎施工工藝。
2.1 基礎施工方案確定
8#墩為鉆孔樁,26根,樁徑1.5 m,樁長20 m,緊鄰烏江主航槽,枯水期基礎范圍內水深0.5~3.5 m,墩位處河床上覆卵礫石,并夾有較大漂石,層厚3.0~4.0 m,下伏泥巖、砂巖夾頁巖,巖面較平緩。在烏江橋基礎施工是鉆孔還是挖孔的方案選擇上,首先是地質條件允許,覆蓋層較薄,泥巖、砂巖透水性差,具備挖孔樁施工條件。二是工期的比較:鉆孔的施工順序應是先鉆孔,再下沉套箱,然后施工承臺;挖孔的施工順序應是先下沉套箱,在套箱內挖孔,最后施工承臺。二者都需下沉套箱和承臺施工,決定工期的因素是鉆孔和挖孔的施工周期。受場地限制,鉆孔施工時按5臺鉆機同時施工考慮,26根樁需要6個循環,每循環10天,共需60天;而挖孔作業,可以26根樁同時施工,40天即可全部完成,比鉆孔可提前20天。于是決定采取挖孔作業方案。實際施工情況是,7#墩26根樁鉆孔施工一共用了75天時間,8#墩挖孔施工共用了40天時間。8#墩施工流程圖見圖1所示。
2.2 施工過程
圍堰筑島施工,8#墩樁基承臺尺寸及標高見圖2所示,根據2001年枯水季常水位標高結合施工水位選定片石籠圍堰標高為200.6,島面標高為200.2。圍堰采用鉛絲片石籠圍堰,根據套箱面積和施工需要,套箱外每側預留7 m道路,筑島面積40 m×31 m,套箱面積25×15 m。圍堰頂寬2 m,內側坡1∶0.5,外側坡1∶1。圍堰筑島施工方法是:于墩位上游自岸灘斜向江中用片石籠施作導流堤至墩位上游堤址,以降低墩位處水的流速,并隔阻行船時產生的水浪沖擊。自岸灘向河內沿圍堰設計外邊堆放片石籠,形成圍堰。圍堰完成后,將以后要施工的薄壁套箱的韌腳放出并將點引到片石籠圍堰上,再用挖掘機將圍堰內河床中較大漂石撈出,并連同薄壁套箱鋼韌腳內外1.5 m范圍內的原狀卵石層挖出,然后在薄壁套箱鋼韌腳內外換填粘土,形成隔水層,其余部位用砂夾卵石回填。粘土回填有利于套箱下沉,并能起到防水作用,減少河水向套箱內滲透,為以后套箱下沉和挖樁施工提供條件。
2.3 薄壁套箱制作及排水挖土下沉
8#墩基礎泥巖標高為194.9 m,套箱下沉后嵌巖至承臺底以下50 cm,套箱頂標高為200.9 m。套箱高6 m,并預留接高條件,防止水情出現變化需要加高套箱時使用。套箱用C20鋼筋混凝土制作,套箱分節制作,首節高3 m,首節下沉至頂面與島面平齊時,安排加高節施工,加高節高3 m,首節壁厚0.8 m,加高節壁厚0.7 m。套箱橫橋方向凈空為25.1 m,順橋方向凈空15 m,按短邊每邊比承臺大一米,長邊每邊比承臺大1.2 m設計,防止套箱在下沉過程中歪斜或偏離設計位置,造成套箱侵入承臺限界。為了使套箱能在自重下順利下沉,套箱重量必須大于井壁與土體間的摩阻力。設計中使套箱自重G大于1.25的井壁總摩阻力。薄壁套箱制作,首先平整島面場地,上鋪30 cm厚的粗砂。由于套箱自重較大,韌腳踏面尺寸較小,應力集中,所以在平整后的砂子上套箱韌腳踏面位置處對稱的鋪滿一層方木,以加大支承面積,定位墊木作出標記。然后在韌腳位置處放上韌腳角鋼,綁扎鋼筋,支立模板,灌注混凝土制作第一節套箱。抽出墊木是套箱下沉的開始,也是下沉過程中的重要工序之一。套箱混凝土在達到設計強度的80%后才能抽撤墊木。墊木抽出前要先清理現場,對墊木編號,并規定聯絡信號。墊木抽出要按一定順序進行,以免引起套箱開裂、移動或傾斜,先抽短邊墊木,后抽長邊墊木。墊木抽出一定要對稱同時進行。套箱定位墊木最后抽出。在墊木抽出過程中,要抽出一根后立即用砂土回填并塞實。
自制10 m長挖掘機前臂,改裝普通挖掘機,制成長臂挖掘機,在套箱下沉時使用長臂挖掘機代替人工挖掘套箱內的土,可大大提高生產效率。墊木抽出后,在套箱旁修筑平臺,長臂挖掘機站在平臺上,進行挖土作業,下沉套箱。開挖時注意套箱四周要同時等速開挖,韌腳處附以人工開挖,防止套箱傾斜。為便于套箱下沉,采取了以下措施:(1)將套箱外側制作成臺階形。(2)采用泥漿套外壁。具體做法是:在套箱下沉過程中,在臺階形成的空隙中注入泥漿,形成泥漿套。第一節套箱下沉到位后,在其上制作第二節套箱。開挖時,遇到的大孤石,均采用人工爆破解小予以清除。套箱下沉約4米處時,一度出現排水困難,分析原因是島體換填是局部換填不徹底或坑槽壁有坍塌,現場發現位于圍堰上游側約2 m范圍內有管涌現象,解決的辦法是暫停排水,等堰內水位與江水持平后,在管涌處圍堰外側3 m寬范圍內挖溝槽至基底,重新換填拈土,效果很好。套箱下沉至巖層時發現基巖面比較平整且透水性差,于是決定停止下沉。用長臂挖掘機配合人工將套箱韌腳處清理干凈。為防止套箱下沉過程中出現較大的變形,造成套箱失穩,套箱長邊支3道支撐。套箱下沉到底后,經測量套箱水平偏移10 cm,套箱歪斜8 cm,水平扭角40″,符合規范要求。
2.4 灌注封底混凝土
套箱下沉完成并將韌腳清理干凈后,考慮到基礎情況較好,取消了將套箱底面全部用混凝土封底的設計,僅在套箱內側1 m范圍內灌注混凝土補強韌腳,由此節約混凝土約500 m3。封底完成后進行挖孔作業和承臺施工。
3 墩身施工及上部構造連續剛構施工
下塘口烏江特大橋墩身類型較多,1、2、3、4、5、6#墩為雙線圓端形實心墩,9、10、11#墩為空心墩,12、13、14#墩為雙線圓端形實心墩;15、16#墩為單線圓端形墩。7、8#墩為主墩,是雙薄壁柔性墩,中間設兩道橫聯。墩頂順橋向為2 m,墩身縱坡1∶0;橫橋向墩頂伸入梁體部分坡度采用1∶0,其下坡度采用50∶1。7#墩高51 m,8#墩為最高墩是,高53 m。
3.1 高墩翻模施工
翻模施工原理:每套模板分上、中、下三節模板,每節高2 m。施工時將三節模板按次序依次支立,然后灌注混凝土,首次混凝土灌注三節模板高度,即6 m。待混凝土達到拆模強度后,拆除下節模板并倒運至上節模板上形成第二循環的下節模板,然后加固澆注混凝土,混凝土灌注一節模板高度,即2 m。然后中節模板向上倒運形成第二循環的中節模板,下節模板向上倒運形成第二循環的下節模板,依次順序向上倒用,完成墩身施工。模板系統由(內)外可調模板、支撐及固定裝置等構成。每節模板由固定模板和抽動模板組成。由于墩所處的位置的不同,我們的翻模分兩種情況,一種是受水影響較小或基本不受影響的墩,我們采用鋼管腳手架平臺;另一種是在河中間,受水影響較大的墩(8#墩),我們采用吊掛腳手平臺,吊掛腳手的翻模。翻模由鋼模板、支撐、拉桿及支撐桿、工作平臺和安全設施等構成。首先進行模板安裝,按照設計位置、尺寸校核、調整模板,固定。鋼筋在墩位綁扎成型,接長采用搭接焊?;炷敛捎帽盟椭炼枕?,溜槽、串筒入模,插入式振動棒搗固。在混凝土頂面預留支撐工作平臺的支撐桿。其后進行模板翻提升,解體后的模板用纜索吊機提升,按照安裝模板相反的順序,分組拆解對拉螺栓和模板,纜索吊機提升解體后的底節模板至第三節平臺,對模板進行清潔和維修,涂刷脫模劑。于吊掛腳手上對混凝土表面缺陷修整,堵塞拉桿孔眼。最后工作平臺提升2 m。
3.2 橫聯施工
橫聯施工與墩柱施工同時進行。原計劃底層橫聯用萬能桿件支撐在墩承臺上,上層橫聯支撐在底層橫聯上,但8#墩在實際施工中,底層橫聯施工時遭遇洪水,支撐橫聯的萬能桿件遭到洪水漂浮物的強撞擊后發生移位。洪水期間,支撐無法恢復,于是改為懸吊施工,為防止類似情況再度發生,橫聯支撐體系做出調整,調整為橫聯下方相應位置埋設預埋件安裝牛腿,搭設梁式腳手平臺支撐橫聯。
3.3 上部構造連續剛構0#段施工
該大橋主跨為72 m+128 m+72 m三向預應力鋼筋混凝土連續剛構,中跨支點處梁高8.8 m,跨中及邊跨支點處梁高為4.8 m,梁底曲線為圓曲線,其中部分梁段(跨中和邊跨支點處)底面為直線段。連續剛構采用懸灌法施工,每個T構對稱懸灌16個梁段,其長度分別為:0#段13 m,其余梁段為3~4 m。梁斷面為單箱單室變截面箱形,箱梁底寬6.3 m,頂寬11 m。梁體設計為三向預應力,縱向采用12或16束鋼絞線,HVM型錨具,橫向頂板采用4-7φ5鋼絞線,HVM型錨具,豎向腹板采用精軋螺紋鋼筋。梁體混凝土為C50級。懸灌梁工藝控制復雜,關鍵要控制以下幾個項目:一是0#段施工,因結構設計上0#段較高,8.8 m,因此,混凝土供應、搗固等成為關鍵問題;二是梁部懸灌過程中的應力監測和線型控制問題;三是合攏和體系轉換問題等。連續梁施工主要包括掛藍設計安裝、0#段及1#梁段施工、懸灌段施工、邊跨段施工、合攏段施工及體系轉換。
0#段是連續梁懸臂施工的基本梁段,是整個剛構施工的基礎。梁頂寬11 m,底寬6.3 m,順橋向長13 m,高8.8 m,有兩道橫隔板,混凝土方量525 m3,設計要求一次灌注,施工難度很大。為解決汛期混凝土的垂直提升問題,該橋采用泵送方案,設置棧橋的目的是為支撐混凝土泵的管道以及在汛期施工時的人員上下問題,本橋修建棧橋兩處,考慮到汛期漂流物的影響,棧橋底面高于一般汛期水位以上1.5 m,懷化側從11#墩至8#墩,修筑長度136 m;重慶側從第六跨跨中到7#墩,修筑長度40 m(如圖3)。
本橋采取墩旁托架施工。采用在已成型墩身上埋設預埋件,然后在預埋件上焊接承力托架,在托架上整體一次性立模澆注0#段混凝土。外模采用大塊整體鋼模板,內模和端模用組合鋼模板托架采用2[20對焊,附著墩身高度2 m。根據托架布置形式,每個墩柱上豎向布置兩排預埋件,每排六組,合計48個預埋件。預埋件采用20 mm厚鋼板組焊。上預埋件面板上留有4根精軋螺紋鋼孔眼,下預埋件留有8根精軋螺紋鋼孔眼。埋在混凝土中鋼板挖孔的目的是為了更好的和混凝土連接成整體。在預埋件外鋼板上焊接由[20組焊的托架。在托架上即可進行布設分布梁、組裝模板、綁扎鋼筋、澆注混凝土等工作。
3.4 懸灌段施工
懸灌段系指中跨的1’~16’#和邊跨的1~17#段,懸灌段是整個剛構梁的主要節段,占整個梁混凝土方量的87.3%。因此,懸灌段施工的速度和質量對于剛構梁來說是舉足輕重。在懸灌施工中使用菱形掛籃,這種掛籃具有移動方便、作業空間大、模板支立快速等優點,因而大大提高了施工進度,保證了施工質量。0#段施加預應力結束后,在梁段上安裝掛籃,然后將底模板、外模板懸吊于掛籃上,形成懸臂施工作業平臺,即可在此平臺上進行懸臂節段的鋼筋綁扎、混凝土灌注、預應力張拉及壓漿等工作。主墩頂部13 m梁段施工結束后,將掛藍走行軌道安裝并錨固在梁體豎向預應力鋼筋上。同時在加工場地組裝菱形掛籃,主要是完成掛藍的橫向連接及加強等工作。1#段及以后的梁段均采用掛籃懸臂灌注。除前面所述每個梁段的混凝土必須在最早灌注部分終凝前一次完成外,更重要的是要確保T構對稱灌注。
3.5 預應力施工
預應力筋的下料、編束和穿束,下料前按國家通用標準對材料進行復試,復試合格后才能下料。預應力筋切割用無齒鋸為主。鋼絞線束不相互纏繞,每隔1~1.5 m用鐵絲捆扎一道,距端頭2 m范圍內每隔0.5 m捆扎一道。編好束后將端頭焊在一起,中間1根要長出48 cm,然后將端頭打磨成卵形,以便穿入波紋管。穿束前用較預應力束直徑大0.5~1.0 cm的通孔器疏通波紋管,再用高壓風吹凈管內的雜物。穿束時先將導線穿過管道與預應力束連接,然后牽引導線并輔之以推送,將預應力束穿入管道,使兩端外露部分滿足張拉要求。
鋼筋采取梁上綁扎,兩次成型。做法是:先綁扎底板、腹板鋼筋,安裝預應力鋼束,待內模支立完成后,再綁扎頂板鋼筋,相鄰段搭接鋼筋用點焊焊牢。在腹板鋼筋綁完后,焊接定位網,每50 cm設一道,三維座標控制位置。波紋管的連接一律采用外接,接頭必須旋緊、頂死,再用膠布纏繞,露出端模板的波紋管不得少于15 mm,在施工過程中注意保護,不能損壞。在懸灌段預應力施工過程中,由于全面按施工工藝要求張拉,嚴格進行質量管理,預應力質量得到可靠保證。
4 懸臂施工線形控制及中跨合龍段施工
4.1 大跨度橋梁懸臂施工線形控制技術
本橋屬大跨度懸臂灌注施工,施工中梁體線形的控制不僅關系到橋型的美觀,更關系到橋梁受力,因此,線形控制歷來是懸灌施工的關鍵控制項目。線形控制技術復雜、難度大,影響因素多,需要考慮到諸如掛藍彈塑性變形、掛藍及梁體自重、施加預應力、混凝土收縮與徐變、溫度應力、地基沉降、體系轉換等各個方面,能否準確預計并及時調整,關系到施工的成敗。
(1)墩頂段采用大型型鋼組焊成的支架在加載后將產生彈性變形和塑性變形,直接影響梁段的高程,對其采取的控制方法是對托架進行等效預加載來消除其塑性變形,測定其彈性變形,在安裝模板時,預抬高底模,抬高值與彈性變形值相等。為了減少托架的變形,我們的托架設計制作時不但保證了托架的強度,而且采用大型型鋼,增加了剛度,減少了變形。
(2)對掛籃進行等效預加載消除其非彈性變形,測定其彈性變形,為混凝土灌注前的立模標高提供依據。
(3)嚴格控制混凝土質量及張拉質量。在預應力張拉過程中,嚴格控制預應力筋的材料質量,定期校正張拉機具,張拉時采用張拉力及伸長值雙控。必須在混凝土達到張拉強度時張拉。在混凝土施工過程中準確控制混凝土的配合比和塌落度等技術參數,進而使混凝土的齡期強度、彈性模量符合設計要求,以保證實測各梁段撓度與理論值相符,以達到線型控制的目的。
(4)精確測量,科學分析。利用微機和線形控制軟件對影響梁段撓度的有關因素進行計算作為線形控制的理論依據。用高精度水準儀進行連續剛構的水準測量,通過微機對測量值進行分析,按其分析結果進一步調整梁段的預留撓度值,使連續剛構的線形真正實現“動態”控制。
(5)線形控制軟件采用鐵一院設計的線形控制專用軟件,通過對預應力混凝土結構進行彈性分析和時效分析,計算預應力混凝土箱形連續梁在懸灌施工中內力和變形。
4.2 大跨度橋梁懸臂中段跨合龍段施工技術
下塘口烏江特大橋連續剛構采用輕型菱形掛籃分段懸臂灌注施工,合龍順序為先合龍中跨,然后向兩側懸臂灌注17#梁段,再在6#墩頂及9#墩頂搭支架灌注19#節段,合龍兩邊跨梁段形成連續剛構體系。7#敦懸臂施工16’#節段結束后,掛藍必須后退,否則,8#敦掛藍不能移動到施工16’#節段位置。7#敦掛藍后退后,將其側模拆掉并加工成端段施工用模板。拆掉底藍并將底藍后平臺拆掉安裝到8#敦掛藍底藍前橫梁下,為中跨合龍段錨固底藍提供施工平臺。8#敦懸臂施工16’#節段結束后,掛藍前吊桿除最外2根不拆外,其余全部拆掉,然后掛籃前移,帶動側模、底模一起前移,到達設計位置后,將側模和底模固定到混凝土梁段上。比較合龍段相鄰的兩個梁端頂面標高誤差和中線誤差,如果其高差≤15 mm,則著手下一步施工,如果>15 mm,則運行線形控制軟件,計算使≤15 mm時的水箱配重所需的重量及布置位置,按運算結果,調整,使其達到要求。經最后測量表明,中跨合龍段標高相對誤差4 mm,中線相對誤差2 mm,完全符合設計要求。
中跨合龍在夏季合龍,氣溫較高。合龍前需進行臨時鎖定。臨時鎖定為體外鎖定,分兩部分:一是預頂,二是預拉。預頂即用千斤頂將兩個“T”構頂開。預頂鎖定有頂推梁和鎖定梁,頂推梁的作用是在千斤頂的頂推下將兩個“T”構頂開,頂開的作用有兩個,一是在夏季高溫時刻,混凝土梁熱脹冷縮,梁有所伸長,通過頂推將溫度升高伸長部分抵消掉,防止溫度降低時,混凝土受拉;二是由于梁帶有齒塊,T構兩側存在這不平衡重,跨中較重,使得梁向跨中側有所位移,頂推的另一個目的是消除這一部分位移。兩個“T”構頂開后再用鎖定梁將兩個“T”構鎖定,然后卸下頂推梁。頂推梁全部在梁混凝土截面內,鎖定梁在截面外,梁鎖定后,頂推梁全部拆掉,只剩下梁體外的鎖定梁,此即所謂體外支撐。預拉即張拉臨時鎖定束,防止中跨合龍混凝土施工過程中或施工完后,梁底板受拉。臨時鎖定束為頂板束2-N41,每束張拉力為400 kN,底板張拉束4-N42,每束張拉力為500 kN。2003年7月18日晚23:30開始灌注中跨合龍段混凝土,拌制混凝土時,將混凝土強度提高一個等級,并摻入微量鋁粉作膨脹劑,以免新老混凝土的連接處產生裂縫。2003年7月19日早2:00混凝土混灌注完成。混凝土灌注完畢,頂面覆蓋海面墊,箱體內外以及合龍段前后1米范圍內,由專人灑水養護。中跨合龍段混凝土強度達到設計強度的80%時,預應力束按先頂板后底板、先短束后長束、頂板與底板交錯進行、先張拉50%控制應力(預應力束剩余伸長量小于千斤頂最大行程)、第二次張拉至設計控制噸位的順序和方法進行張拉。
5 結論
大跨度特長橋施工中在梁部開始施工節段,準備工作要充分,詳細制定0#段施工作業指導書,從模板的支立到鋼筋的綁扎,到預應力管道的埋設以及混凝土各位置的振搗,要統籌考慮,提前考慮。詳細的對下交底,及時對施工操作人員進行培訓。各種不利情況都要考慮周到,按最不利情況做施工準備工作,要準備雙泵管以準備堵管,要準備備用方案以防止在混凝土輸送泵施工中損壞等。在大跨徑橋梁施工過程中,成立箱梁施工撓度觀測組和施工標高控制組是十分必要的,可以系統的收集和整理撓度觀測數據,研究規律,及時調整梁段施工標高,從而得到合乎設計要求的箱梁標高,提高箱梁的合龍精度。在各階段觀測的箱梁撓度中,溫度的影響顯著且不可避免,要觀測不同懸臂長度時溫度對撓度影響的大小和規律,并在溫度影響較小的時間段內進行撓度測量。大跨度預應力連續剛構橋懸臂箱梁施工中,撓度變形有一定的規律性,應以施工階段作為觀測周期,對其進行詳細不間斷的周期觀測,然后進行認真的分析各階段撓度變形的規律及與設計值的差異情況,并據此進行施工標高的調整,只有這樣才能保證成橋的線形。
參考文獻
[1] 郝良秋,趙亞楠.哈大鐵路客運專線新開河特大橋138m鋼箱疊拱橋“先梁后拱冶施工技術[J].鐵道標準設計,2012(5):109-112.
[2] 劉彥軍.廣州官洲河特大橋施工技術研究[D].西南交通大學,2005.
[3] 章獻.渝懷線長壽長江特大橋施工技術研究[D].西南交通大學,2003.
[4] 齊春峰.荷麻溪特大橋部分斜拉橋主橋施工技術研究[D].中南大學,2007.
[5] 蘇立華.容桂水道特大橋施工技術與施工控制研究[D].西南交通大學,2008.
[6] 阮正潔,齊金朋.甬臺溫鐵路雁蕩山特大橋2×90 m疊合拱鋼橋施工技術[J].鐵道標準設計,2010(3):57-62.