時間:2024-01-26 15:53:39
導語:在核心素養下的數學教學的撰寫旅程中,學習并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優秀范文,愿這些內容能夠啟發您的創作靈感,引領您探索更多的創作可能。

很抱歉沒有把他們的理念方法全都記下來,我寫下來的就只有一些皮毛。所以下面我就來談一些自己的粗淺的體會。
他們這幾個名師的課都有著共同的特點,就是注重情感交流,拉近了師生距離。好的開端是成功的一半。幾位老師的就進行了課前師生交談,看似簡單、平淡、多余,實則利用課前短暫的兩三分鐘組織教學,采取玩游戲、聊天等各種形式的師生互動,消除了學生的緊張情緒,拉近了師生間的距離,減輕課堂學習的枯燥感。于是他們在課堂上游刃有余,師生配合十分默契,甚至可以看出,老師把那個學校的學生都當成平時自己教的學生了。而從這一點,我就可以看出差距是多么的遠啊。我就在反思自己。
幾位老師的課都很精彩,其中給我印象最深的,也是給我震撼很大的是——二年級《數學游戲》。當時我拿到課程安排表,看到這個課題時,我就說“有這節課嗎?”因為我也上了二年級的課程,很清楚二年級的課程內容里沒有這一課,但為什么她就上這個課呢?我簡單給大家介紹一下。她這節課其實可叫做“數學游戲——乘法口訣大pk”,整節課都是孩子在借助骰子玩乘法的游戲,而在這個過程中來提高計算表內乘法的正確率和速度,并找出一些規律。提老師兒童化的語言、形象的肢體語言教學是她最大的特點。在游戲一前,先讓學生明確要求,并請一組學生上臺示范,再讓學生同桌口算比賽得小旗,學生比得不亦說乎,最終選出了冠軍,由此一來,不但提高學生口算的能力,更是激發學生學習的興趣。其實在這個教學過程中,所含的知識點多了,學得不僅僅簡單的二年級表內乘法的內容,而涉及到高年級學得有統計、有可能性的內容了。雖然內容是高年級學得,但在經過簡單的游戲中讓學生初步感知了概率,積累了經驗,為以后奠定了基礎。
那我為什么說這節課給我很大震撼呢?因為她的整節課都是讓學生在游戲,在游戲中總結出結論。我想我們沒有哪個老師是有專門拿出課來上這樣的游戲課,可能我們學校有這樣的老師,只是我沒有接觸。但是我是沒有的。我的課堂都是知識性課堂,只傳授給學生要學的知識理論,這道題該怎么做,這個該怎么說,這個叫做什么。我想我剝奪了孩子們的快樂,我的古板教學導致學生缺乏了探究的能力,就像余穎老師說得一樣,數學太像“數學”了。
其實“游戲”在低年段的教學中,起著非常重要的作用。學生的天性是玩,一節數學課一味的講、算、聽、寫,枯燥無味,有了游戲的加入,效果就不一樣了,學生的興趣一下子被調到起來了,可以在輕松愉悅的情緒下學習數學知識、思考數學問題,體驗數學帶給他們的無限精彩和樂趣!從而讓他們喜歡上數學。
【摘 要】 示范教學作為一種古老的教學方法,歷來是解決技術傳承的利器,在美術學科也不例外。 那么何為有效示范呢?本文通過對課堂示范教學的觀察與思考,總結美術課堂有效示范應該具備示范直觀生動、學生的主動參與、多樣整合、適度留白、拋磚引玉、積極創新的特點。
【關鍵詞】 有效示范;直觀性;主動參與;適度留白;創新;關系
從古至今,在美術教學中示范教學始終是一種重要的教學方式。因為美術的視覺性和實踐性決定了必須眼見為實。美術的“術”字告訴我們其中包含著很強的技術性。技術也是一種文化,其間也包含著美。傳統示范往往采用單一方法進行過程示范,過多地關注教師自身示范的效果。這樣的示范只能體現一種技法,不能開闊學生的眼界。這樣一來反而使學生過多地依賴老師的示范,禁錮了學生創造性思維。那么如何才能避免學生機械地臨摹老師示范的現象呢?什么樣的示范才是有效的,才能展現出美術學科獨有的魅力?筆者認為有效示范應該具備以下幾個特征。
一、示范教學應關注學生的主動參與度,激發學生思維
傳統示范教學中教師往往采用獨立演示,學生充當看客,處于被動接受的地位,使得教學效果較差。教師在創設示范環節時要充分關注到學生的參與度,使得學生的思維在示范環節中得到很好的激活,實現主動學習。在上《蘑菇家園》一課時,我借用學生畫的蘑菇外形,讓孩子出主意加上窗戶、門等,師生一起把普通的蘑菇變成一座漂亮的蘑菇房子。在修正示范環節直接采用對學生作品進行示范,并讓其他同學出主意加什么形狀的窗戶,什么類型的門,充分地激發了學生的創意思S和參與熱情。這樣的示范環節儼然使學生成為主角,師生互動的示范教學閃爍著教學智慧的光芒,也閃耀著師生平等的光輝。
二、示范教學可以對多種資源、教學手段進行整合
飯店為迎合不同人的口味,會提供多樣的飯菜。示范教學也不例外,創意往往來自于獨特的個性與個體豐富的內在體驗。示范教學應盡可能為學生提供多樣的選擇、多樣的構圖、多樣的技法、多樣的題材,也包括多樣的手段進行示范教學。在第五屆全國中小學美術優質課評比中同樣有一個優秀課例在示范教學上做得非常突出。《下雨了》一課中,教師在六分鐘內不僅示范了兩個人物的畫法,還通過活動教具補充了多個人物動態;并用不同的線條表現了各種雨的表現方法;最后示范兩種構圖的方式提示學生構圖時可以有不同的選擇。這樣的示范解決了技法的問題,也激活了學生的思維。多種教學手段的整合,能揚長避短,并以遷移、比較、延伸等方法拓寬學生的視野,引發發散性思維。在“立”知識技能的同時,能及時“破”傳統示范對學生的思維禁錮;在傳授技能的同時巧妙規避示范帶來的后遺癥。
三、示范教學需要適度留白
教學示范環節中教師必須擺正自己的位置,明確示范教學不是個人風采大賽,示范不能因為展示個人風采占用太多教學時間。時間太長的示范,會使得學生產生視覺疲勞,反而會使得要點被忽略。因此,優秀的示范首先要對示范的內容與時段進行精選,實際教學過程中,往往只需提供局部的示范,因為教師的完美也許就是學生的枷鎖。我在教學《瓶子新生代》時,為了激發學生對肌理的探究,故意在演示時放棄瓶子的外形,在陶板上進行示范,以避免出示的瓶子束縛學生的創作。教學是一種留白的藝術,適當地留白給予學生的將是創意的空間。
四、示范教學應起到拋磚引玉的作用
示范教學的目的不僅是為了讓學生能夠掌握一種知識或技能,更需要通過示范,與學生的已有知識建構聯系,使學生能舉一反三,達到知識的遷移。一位教師執教《蟲蟲大聚會》這一堂立體紙工課,在示范了蝴蝶的做法之后,通過改變又示范了蜻蜓,又通過加法將毛毛蟲變成了瓢蟲。通過這樣的演示為學生提供了更多的創新思維,通過加減法可以靈活地將已有的方法運用于更多的昆蟲制作,最后學生完成的作業不但沒有拘泥于老師的示范,而且非常精美!這樣的示范就激發了學生的創作思維。
五、示范教學應與時俱進、積極創新
示范教學經過這些年課改的洗禮,無論在示范方法、工具還是在思維方式上都被賦予了新的內涵,創新意識是新型有效示范所具有的品質。有的教師通過微視頻示范,讓示范更直觀更清晰,變得更有效;有的教師更是把現場演示和多媒體示范相結合的方式進行結合進行示范,做到動態展示與靜態分析相結合,更便于學生理解。也有的教師大膽采用逆向思維的方式進行示范,通過比較,不僅可以讓學生認識事物的特點,也可以一目了然、優勝劣汰,同時也可以通過對比激活學生思維。
綜觀許多長期從事美術教育、教學的優秀教師,他們的課堂教學之所以取得精彩,往往是在教學中適時地采用了示范這種教學手段解決美術課中的重難點。美術課堂示范是構成美術課堂教學的中堅柱石,許多美術課如果沒有教學示范,美術教學目標就難以順利實現,便談不上學生的美育素質提升。當然教學示范可以有多種形式呈現并沒有固定的模式。教學示范應根據學生和教學內容合理運用,才會有事半功倍的效果。揚長而避短,教學示范小方法,解決課堂教學大問題,提高課堂有效性。
【參考文獻】
[1]周玉森.讓學生在體驗中自主發展[M].人民教育出版社
關鍵詞:數學核心素養;小學數學;教師課程體系;構建策略
一、引言
基于小學數學教學改革的趨勢,高校在培養小學數學教師方面也應該順應新課改要求,提升數學教育專業學生的專業教學能力,以滿足當前的小學數學教學需求。
二、制定統一的培養標準
當前階段,我國高校的小學教育專業在課程設置上缺乏系統性,隨意性和經驗性特點突出,這種形勢影響了小學教育專業學生的知識獲取和素質提升,使職前小學數學教師的專業教學素質不能達到課改要求。基于此,設置相關專業的高校應該制定統一的職前教師培養標準,提升課程體系的科學性和合理性。可組織相關的數學家、數學教育研究者以及小學數學一線教師等多方力量,在核心素養框架的指導下,結合數學學科的特點以及教學所需的數學知識等理論,梳理出小學數學教師所需的數學核心素養,并在借鑒世界其他國家有關標準的基礎上,形成適合我國小學數學教師專業發展的培養標準,為各師范學校開設相關課程提供一定的方向與依據。在制定培養標準時需要考慮其可操作性,方便教師對相關內容的理解與具體實踐。
三、適當轉變教學方式,促進教學目標的合理發展
核心素養培養目標驅動下,小學數學教學要求教師能夠順應形勢發展,調整課堂教學活動,因此在高校的職前教師培養中,也應該積極轉變以往的專業教學方式,依據教育發展形勢不斷進行專業教學目標的調整。具體實施方法主要有三個方面:第一,基礎課程,也就是國家和地方課程,要對這些課程進行校本化設計,圍繞語文、數學、英語等學科進行二次開發;第二,設置選修課程,學生可以根據自己的興趣愛好選擇自己想要學習的課程,以走班的形式參加學習;第三,課程活動化,比如早操,可以組織管樂團的學生吹響集合號,其他學生迅速到操場集合,學校的校訓、校風、學風等通過呼號深入頭腦,最后在校歌聲中走步調整。學生在此過程中不僅僅是在進行身體鍛煉,還包括了知識與能力、過程與方法、情感態度與價值觀的全面發展;另外,鼓勵適當利用科技媒體,協助學生由“知道”的層次,進入“理解”及“體驗”的層次。提供體驗與探索課程,使教學兼顧“知識能力”與“方法能力”的培養。
四、加強與數學類課程的內容聯系
當前,我國小學教育展專業中數學專業課主要包括數學分析、高等代數、空間解析幾何、初等數論、概率統計、小學數學教學研究。數學專業課程的開設,主要是為了提升小學數學教育專業學生的教學指導和研究能力,因此強化數學課程和學科體系構建之間的聯系是十分有必要的,直接關乎小學數學教育專業學生的專業能力。因此小學數學核心素養培養的教學要求下,高校也應該進行小學數學教育專業的課程安排調整,小學教育新數學課程與原課程相比有重大變化,主要表現在兩個方面:一方面是增加了一些新的內容。例如,離散數學、高等幾何、概率論與數理統計、線性規劃、數學文化、數學史、數學探究、數學建模、數學實驗等。另一方面對原有內容采取了新的處理方式。這些變化對高效小學教育專業數學類課程內容及體系建構都提出了新的要求。需要高校在構建小學數學教育專業課程體系的過程中,結合專業教學需求,不斷進行數學專業課程比重的有機調整,為學生的專業能力提升提供契機。
五、構建具有反思性、合作性的實踐課程
要培養高質量的小學數學教師,僅教授一些顯性的理論知識是不夠的,還需要提供教育實踐以幫助學生在體驗中進行反思。因而,對于實踐課程的設置,不僅要重視提高學生的教學技能,還需要加強其反思意識與能力的培養。可以將實踐課程的實施與數學類課程相結合,讓學生在學習相關理論知識之后,走入小學數學課堂,通過觀察或是親身實踐,并在與指導教師的交流中對所學內容進行體會反思,這不僅有助于學生對于教學一般程序、基本策略的掌握,而且有助于他們能在理論與實踐的結合中逐步形成教學的智慧。在基于數學核心素養的小學數學教師課程體系建構中,可開設有關數學教學設計、數學課堂觀察、數學概念教學等主題實踐類討論課程,將職前小學數學教師分成若干個學習小組,通過相互合作,一同梳理教學內容的關鍵屬性、探討某個主題的教學設計、學習觀察學生的技巧等,并且通過這個交流的平臺,分享教育實踐中自己的想法、經驗以及觀點,這不僅有助于其教師專業素養的提高,也能夠促使他們在畢業后較快地融入教師教研活動之中,并在與優秀教師的交流討論中獲得有利于小學數學教學開展知識經驗,在提高自身數學核心素養的同時,不斷推進以提高小學生數學核心素養為目標的課程教學改革。
六、結語
總之,新的教育形勢下,高校的小學數學教育專業也應該順應形式進行專業教學內容和方式的調整。數學核心素養能夠真實地反映出小學數學教育教學的價值和本質,是小學數學教育教學過程當中最核心的問題。在整體的教學過程中,教師一定要重視培養學生的數學核心素養,不能一味地只重視學生對數學知識和技能的掌握,同時,還應該引導學生積極主動地參與到核心素養的提升和建立過程當中,提升小學數學教學質量。
參考文獻
[1]李奎,馬麗君.小學數學學科核心素養建構初探[J].現代中小學教育,2017,(04):36-39.
[2]管云霞.關于數學核心素養的小學數學教師課程體系確立[J].學周刊,2017,(11):8-9.
[3]徐國明.小學數學核心素養培養的思考與實踐[J].中小學教師培訓,2016,(07):42-45.
【關鍵詞】高中數學;問題-互動;核心素養
數學核心素養是數學的生命和靈魂,是最能夠體現學生能力和數學品質的關鍵要素,是數學教學的重點,也是培養高素質人才的根本所在。不少學生平時考試成績不錯,但是,以后發展空間相對有限,其根本原因是其數學素養相對較差,從根本上限制了他在數學以及其他方面的發展空間和提升高度。因此,高中數學一定要重視數學核心素養培養,注重問題設置和師生互動,讓學生能夠在問題互動中培養他們良好的數學素養。
一、堅持師生高效率教學互動,以問題導向營造核心素養生成情境
師生互動是課堂教學的重要過程,也是保障課堂教學效率和實效性的重要基礎,更是培養學生綜合能力的重要方式。高中數學在“問題-互動”教學中培養學生的核心素養,實際上是為教學明確了目標,指明了方向。問題―互動教學是一種模式,問題為互動提供了媒介載體,互動保障了問題教學的有效性,而核心素養則是為其明確了重心。數學素養的培養需要在具體的情境中才能真正感知體驗和遷移,需要結合具體的問題分析來鍛煉思維和能力,高中數學結合學生基礎,創設以問題導向的互動教學情境,讓學生能夠互動交流中生成數學素養,促進學生全面發展進步。
例如,學習“任意角”的相關教學內容時,可以先給學生聯想有關角的實際例子,學生開始互動討論,他們找到了一些實際的例子,比如,跳水表演中有個動作在空中轉三圈,再進入水中,會聽到解說員專業的術語“向下轉體1080b”;在觀看體操表演過程中,也有在單杠或者雙杠上“左后轉體720b”的解說。還有時間調整是常見的事情。此時教師再向學生提出這樣的問題,上面的1080b和720b已經超出了初中階段的關于角的度數的范圍,尤其是矯正時鐘,順時針和逆時針旋轉如何來表示其不同?由此來讓學生樹立角的方向概念,并由此產生角的正負問題,逆時針旋轉形成的角定為正角,而順時針形成的則為負角。這樣的問題和互動能夠讓學生結合生活經驗,讓他們從具體生活應用中感知數學,學會分析和表述,培養學生正確應用數學的核心素養。
二、以問題為媒介展開深度互動,實現數學核心素養與學習目標融合
高中數學“問題―互動”教學引發教學理念更新和教學模式變革,真正轉變教學思想,創新教學模式,帶來全新的體驗,讓學生能夠真正成為學習的主人、思考的主體,能夠將數學課堂生成一個更富動態變化的有機生態復合體。促進學生更好地認知和學習,培養學生的數學思維和邏輯分析能力,讓數學課堂真正回歸,凸顯數學教學的本真。基于“問題―互動”的高中數學教學模式教學,問題是開展教學的重要媒介,是互動的基礎,在互動教學中能夠突出問題要求,讓學生在問題的驅動下思考和實踐,感知生活和生產現象中的數學問題,分析已知條件和未知結果之間的對接關系,將問題解決與學習目標和數學核心素養培養融合起來。讓學生能夠真正面向社會生活,面向更加廣闊的生產實踐,用數學的知識分析和解決問題,培養他們的數學思維,在互動教學過程中不斷拓展和升華學生的思維能力,培養良好的思維品質。
三、精心選擇和設計問題主線,實現數學知識與核心素養的粘合
高中數學教學應該重視問的選擇和分配組合,一方面要結合數學教學內容選擇和設置問題,并做好問題的排序和投放頻率,確保問題能夠帶動學生學習數學知識,鍛煉基本分析和解決問題的能力。另一方面,將數學教學內容和數學核心素養深度粘合,在完成教學內容的同時培養學生的數學核心素養,不能單獨對學生進行所謂的核心素養分析,而應寓核心素養與教學內容之中。以問題為推動課程進程和環節組合的主線索,巧妙處理數學核心素養與教學內容的關系。問題是場景,數學知識是形體,而數學核心思想就是靈魂,這樣能夠讓學生在分析和處理問題的過程中構建和豐滿的生態課堂。
例如,學習任意角的三角函數的相關教學內容時,先給學生出示這樣一個問題:初中階段學習銳角三角函數時都是借助直角三角形的邊角關系來定義,如果將銳角推而廣之變成任意角,是否可以將銳角三角函數概念推廣到任意角呢?怎么推廣?然后引導學生進行互動,學生認為可以用直角三角形的對邊、臨邊、斜邊比值等來研究任意角的三角函數。教師再向學生提出相應的問題,如何才能研究和分析其函數值呢?學生分析可以借助直角坐標系,將任意角放置到坐標系中。這樣就可以重新定義銳角三角函數了,然后再進行演示。這樣的教學以問題為主線,將已學知識與新學知識相結合,彼此勾連,生成完整的意義鏈條,實現知識與核心素養的粘合。
總之,一切教學都應抓住最為本質的內容,突出重點。數學核心素養就是數學最為本質的內容,所有的教學設計都應圍繞這個核心,選擇教學方法和模式。“問題-互動”教學能夠讓學生在學習中得到真正的鍛煉和提升,能夠真正激活學生的思維,讓學生獲得更好地思維能力,培養他們對數學的感知和感悟能力,能夠用數學思維和數學知識去分析和結合生活與生產中的問題,真正體現數學的價值,培養學生的綜合素養。高中數學培養學的核心素養,鍛煉他們的理性思S,強化他們的數學思維方法,真正培養和提升學生的學科核心素養。
【參考文獻】
一、基于深度學習的高中數學教學設計基本要求
《普通高中數學課程標準(2017年版)》指出:高中數學教學要在學生有意義學習的基礎上發展學生的數學學科核心素養。對此,數學教師應切實做好基于深度學習的數學教學設計,即深入理解分析教學內容、挖掘教學內容蘊涵的思想方法、梳理教學內容內在的框架結構、遵循教學內容嚴密的邏輯生成。簡言之,基于深度學習的高中數學教學設計要體現“注重理解性”“滲透思想性”“把握整體性”“恪守邏輯性”等方面的基本要求。
1.注重理解性
深度學習是學習者提高學習質量的有效方式,學習者可通過深度學習靈活理解學科知識并應用其解決實際問題。所謂注重理解性,是對知識通性、通法、共性的深度認識,它是數學教學中的基本要求,是學生掌握數學知識、發展數學素養的有效手段。《普通高中數學課程標準(2017年版)》指出要培養學生學科核心素養,主要指學生通過學科學習而逐步形成的正確價值觀念、必備品格和關鍵能力,但相關研究表明學生僅通過簡單記憶和機械式應用無法達到課標的要求。而深度學習作為一種教學理解和教學設計模式,旨在通過理解分析教學內容,設計有助于學生深度思考的教學活動,使體現學科本質、關注學習過程和富有深度思考的學習活動真正發生。可見,深度學習的重點在于引導學生在學習過程中產生認知沖突,進而組織學生全身心地參與學習活動,讓學生體驗成功、獲得發展,以提升學生的綜合素養。因此,在深度學習的數學教學過程中,學生要理解數學的核心內容,并在經歷數學知識的發生發展歷程中把握所學內容的數學本質,從而促進學生核心素養的發展。總之,要實現學生的深度學習,落實數學核心素養,數學教學設計就必須基于學情,確立“適切”的深度學習目標,且精心設計教學及評價任務,進而引導學生深度理解。
2.滲透思想性
在深度學習的數學教學過程中,滲透數學思想是培養學生思維能力的一種有效路徑,它能促使學生形成自己的學習方式,逐步提升學習效率。所謂數學思想,是指數學知識、方法在更高層次上的抽象概括和最本質的認識。但如何在數學教學中滲透數學思想?研究發現:教師深度教學與學生深度學習相結合是滲透數學思想的重要方式,即深在學生參與,倡導積極主動的學習態度;深在課程內容,倡導知其所以然的思想意識;深在學習過程,倡導學以致用的教育理念;深在學習結果,倡導批判思維的學習策略。因此,教師在設計數學課堂教學時,要讓學生學會通過深度學習將自身獲取的點狀、片段、孤立的知識、思想內化為必備品格和關鍵能力。讓學生經歷深度學習的思維過程,促使學生分析問題、解決問題、批判思維、創造思維等能力得到顯著發展,從而強化學生的數學思想意識,發展學生的數學核心素養。
3.把握整體性
整體把握數學學科主題,聚焦核心素養主線,系統設計課堂教學是指向深度學習的數學教學設計基本策略。所謂把握整體性,即數學知識不是孤立的“點”,數學教師要從整體上把握彼此聯系的基本命題或概念體系等。從深度學習的目標來看,數學整體性教學設計培養學生會用數學的眼光觀察現實世界,從中體現數學的抽象性;會用數學的思維思考現實世界,從中體現數學的嚴謹性;會用數學的語言表達現實世界,從中體現數學的應用性。從深度學習的內容來看,數學整體性教學設計一方面要求教師在講解教材中顯性知識時,應引導學生透過現象發現數學的本質,深度理解數學的思想方法等隱性知識,進而達到顯隱知識的動態轉化;另一方面要求學生能將零散的數學知識整合,能系統梳理知識框架,能架構科學的、合理的知識體系。因此,教師在設計教學時應把握整體性,積極引導學生在知識遷移與應用的過程中發展數學核心素養。總之,整體把握數學教學設計需要有效解決課時間的零散性與知識間的孤立性,單元間的割裂性與學科間的無關聯性等問題,從而更好地揭示數學知識的本質,促進學生學習的遷移類推,進而達到深度學習,為學生的自我發展奠定基礎。
4.恪守邏輯性
問題是數學教學的引領和驅動,而數學教學實質上是數學問題不斷得以解決的認知過程,故問題特色是設計教學的邏輯起點,它貫穿于目標、過程、評價及反思等環節之中。同時教材的內容體系編排總是遵循知識點間的相互聯系及其框架的邏輯結構。對此,基于深度學習的高中數學教學設計要恪守邏輯性是重中之重。所謂恪守邏輯性,是指教學內容設計符合邏輯框架、具有一定的邏輯特點和邏輯規則。可見,教師需按照合情合理、合乎邏輯的學習要求,整體梳理數學知識框架、把握數學本質促進知識理解,培養學生邏輯思維能力,促進其深度學習。因此,高中數學教師在設計教學時,應結合數學課程標準的相關理念及要求,從知識邏輯結構的視角研究課程、組織學材,關注知識點間的內在邏輯,使得相關知識形成一個完整的知識鏈條和結構體系,從而把握知識的系統性,進而促進學生數學核心素養的發展。
二、基于深度學習的高中數學教學設計優化策略
指向深度學習的教學設計是教師對學科知識本質和學生學習的具體的、深入的設計。這就要求教師在整體理解教學內容、目標、學情的基礎上完成教學設計,具體應掌握如下教學設計優化策略。1.密切聯系實際生活,引導學生理解數學本質數學本質是教學設計的本意和本然狀態,教學中的創意不能偏離教學的本真意義,不能脫離學生的原有經驗,更不能背離教學目標制造虛假的創造。如“三角函數的概念”的情境引入環節,教師可設計:一個游樂場的摩天輪設施,假設它的中心離地面高度為h0,它的直徑為2,以逆時針方向勻速轉動,轉動一周需2分鐘,若此刻座艙中的你從初始位置OA出發,過了15秒后,你離地面有多高?過了30秒呢?45秒呢?教師借此引導學生理解抽象知識,培養學生數學思想及解決實際問題的能力。可見,基于深度學習的數學教學設計要從學生的學情出發,借助信息技術整合相關數學教學資源,教學素材要密切聯系學生生活實踐,在引導學生自主探索、動手實踐的過程中理解數學本質,從而構筑栩栩如生的數學課堂。
2.精心創設問題情境,幫助學生掌握思想方法
數學教學中的深度探究由數學問題情境引發,在解決數學認知沖突中展開,并在不斷解決數學問題的過程中實現知識技能與思想方法總結兩個核心目標。如“三角函數的概念”的探索新知環節,教師可設計:若在摩天輪座艙中的你從初始位置OA出發,過了15秒后,你在什么位置呢?你離地面有多高呢?過了30秒呢?45秒呢?60秒、75秒、90秒、105秒呢?讓學生感知數學與生活的緊密聯系,探究其中蘊含的數形結合等思想方法。可見,在基于深度學習的教學設計中,教師要精心創設有效的、豐富的教學情境,培養學生的問題意識,既讓學生理解數學知識,更讓學生掌握研究問題的方法、探究問題的思路及如何構建知識體系的能力,進而發展學生的數學核心素養。
3.整體把握教學思路,引領學生實現知識遷移
數學課中的教學內容都是相應數學分支中的點,只有教師站在整個分支的高度來設計教學,才能從整體上把握所授內容的地位與作用、能力與要求、系統與建構,才更有利于學生真正理解和掌握相應的數學知識內涵、方法運用、思想本質。如“三角函數的概念”的鞏固訓練環節,教師可設計:小明同學在游樂園乘坐旋轉木馬,他在半徑為2的圓上按順時針方向做勻速圓周運動,角速度為1rad/s,求2s時他所在的位置。可見,教師在進行基于深度學習的教學設計時應整體把握教學思路,既要注重知識技能的講解,也要注重基本思想方法及基本活動經驗的培養,并通過鞏固訓練環節引領學生探析知識的遷移運用,增強學生從數學的角度發現、提出、分析、解決問題的能力,進而發展學生的數學核心素養。
【關鍵詞】多元抓手;數學教學;核心素養
數學教學素養,是指數學學習中,刨除具體的解題方法、理論知識后,學者所能掌握的數學的理性思維、內化認知、邏輯推理等綜合能力。它并不僅僅是具體的數學理論和知識,而是從中提煉出的數學思維和數學能力。而這種能力,并不是一章、兩章的知識、技能教學就可以培養的,它是貫穿學習始終、千錘百煉而成的,難得,也不易失去。本文中,筆者結合多年的教學經驗,從三個方面闡述了多元抓手,“抓”好數學教學核心素養:滲透文化,升華認知;探究細微,深化思維;聯系對比,高屋建瓴。
一、滲透文化,升華認知
數學教學中的基礎知識和理論,就好像是數學核心素養的基礎和表現。而實際操作中,學生如何思考題目、如何解答題目,其中的邏輯、思想,則是真正的核心素養。數學教學的核心素養,它基于基礎理論和知識的鋪墊,又深化知識理論的理解和認知。此時,教師應該向學生有意識地滲透數學核心素養文化,以此升華認知,培養綜合能力。
如在講授“函數”相關知識時,我跟學生們陳述道:“既然函數是特殊的映射,那么函數便具有映射的所有性質,但既然是‘特殊’的函數,顯然他們有不一樣的地方。你們知道是什么嗎?”一個學生舉手答道:“函數中A、B是兩個非空的數集,而映射中A、B是兩個非空的集合,集合的范圍比數集大很多。”聽后,另一個學生舉手發言道:“同樣的,我可以說,數列也是特殊的函數,一般函數的圖像是連續不斷的,而數列的圖像是分散的點,還有就是我們學過的等差數列如a1+a5+a8+a11=20和等比數列如a1×a100=100,也可以寫出函數解析式,也就是通項公式,因此我們就可以利用函數的方式解決數列的問題。”最后我總結道:“體會數學學習的層次性和內在邏輯,當基礎知識儲備達到一定程度以后,我們就可以抽象出更加深刻的思維模式,將文化與數學相結合,相輔相成,升華認知。”
牛頓說過:“我的成功歸功于精細的思考,只有不斷地思考,才能到達發現的彼岸。”教師教學的主要目的,除了教給學生基礎知識和理論,還應該是教給他們學習和思考的方法,讓學生從“聽懂”到“學會”。
二、探究細微,深化思維
學習的過程是循序漸進的,而數學核心素養的養成更是要一點點探究和深化的。我們不會一直學習數學,生活中也不是經常用到數學,但是它的邏輯思維、推理方法卻是我們可以終身受益的。
如我在給學生們講授不等式時,闡述道:“證明基本不等式時,就可以借助弦圖利用邊之間的關系直觀地解釋公式,也可以借助圓的知識,直徑所對圓周角為九十度,利用輔助線構造相似,最終引用‘對應邊成比例’這一相似性質證明基本不等式的正確性。”學生們聽后紛紛表示贊同,有學生主動發言道:“老師,經過學習,我發現大多數的題目證明方法和解題思路并不局限,可能會有多種,甚至會拓展到其他的學科,運用到其他學科的知識,我真的體會到什么‘學習是相通的’。”我答道:“你說得對,正是因為知識的互通性和思維的嚴謹無界,才使得我們的生活更加有秩序,看到問題也不再只是被動的接受,而是可以主動地去思考,去探究,去解決。”
課堂教學中,教師有意識地引導學生探究細微、挖掘細節,通過易懂的知識,如概念的分類、定理的證明、公式法則推導等,使學生可以通過細微的觀察和探究,深化思維,培養學生的數學核心素養。
三、聯系對比,高屋建瓴
課堂教學中,聯系對比似乎是屢試不爽的教學方法。通過已經掌握的知識,聯系、對比,認知新的知識和技能,從而熟知、掌握,既可以加強學生對于數學知識的理解和掌握,也有利于拓展人的思維模式,高屋建瓴。
如在學習函數基本性質時,我們通常會研究單調性、奇偶性、周期性、對稱性,而在學習基本初等函數時,研究對數函數y=logax、指數函數y=ax、冪函數y=xa的性質就要聯系到之前學過的函數基本性質,除了研究單調性、周期性、奇偶性、對稱性之外,還要考慮函數的過定點、最值、漸近線等問題,包括接下來再學習的三角函數,不僅要聯系函數基本性質,還要找正弦函數、余弦函數、正切函數之間的變化及聯系,通過建立表格使思路更清晰、對比更明顯,結合圖像記憶效果更佳,不僅減輕記憶負擔,還能強化知識間的聯系,立體幾何中柱體、椎體、臺體的表面積和體積公式學習以及平行和垂直的判定定理和性質定理記憶也是如此。所以我經常跟學生們說:“定期歸納和總結是非常好的學習方法,找到知識間的內在聯系,拓寬思路,才能舉一反三,事半功倍。”
對于大多數學生來說,在學習過程中,他們并不是很懂得如何運用聯系和對比的方法,這就要求教師教學時,能夠結果學生的自身特點,引導學生自發將新知與已知進行聯系和比較,從而增強學習能力,進而增強核心素養。
總之,在課堂教學上,教師應將數學核心素養的培養作為課程教學的重點,通過基礎理論和知識的傳授,將數學學習的思想和方法傳授給學生,鍛煉他們的邏輯思維,培養學生的數學核心素養,從而能夠將數學的核心素養運用到生活的各方各面。
【參考文獻】
【關鍵詞】小學數學;數學思想;核心素養
引言
在以往的數學教學中,主要以傳授知識為教學重點,忽視了思想方法對學生熏陶的作用,不利于學生數學思想及素質的形成與提升。近年來,隨著新課程改革的逐步推行,教育更加注重對學生學習思想、學習能力的培養,要求教師在教學中應尊重學生的主體地位,充分發揮學生的主觀能動性,這樣才能進一步提高教學效果。那么,在小學數學的教學中,如何融入教學思想發展學生的數學核心素養?
1.創設問題情境,激發學生數學思想
生動、活潑、有趣的課堂氛圍是吸引學生投入到學習中的前提條件。在學習過程中,學生敢于提出問題、思考問題、解決問題,是培養與提高其思維能力的關鍵。數學學科的抽象性、邏輯性特征較顯著,學生難度相對較大,若課堂氛圍枯燥、乏味,很難調動學生的學習興趣,更無法激發學生的數學思想意識。因此,在日常的小學數學教學中,教師應重視問題情境的創設,激發學生的學習興趣。通過設置環環相扣、層層遞進的數學問題,引導與啟迪學生對數學問題進行思考、探索,以發展學生的數學思想。
例如,在學習蘇教版小學數學四年級下冊的《三角形》的“面積計算”內容時,教師可設置如下問題:我們所學的平面圖形有哪些?還記得它們的面積計算方法嗎?一些學生則會回答“正方形”、“長方形”、“平行四邊形”,“面積公式為S=a×h。”教師順著學生的回答再提問“誰還記得平行四邊形的面積公式是如何推導出來的?”思考幾分鐘后,教師用課件對圖形的割補進行演示,然后在適當時機對學生進行誘導“從圖形變化過程中有新的啟發或想法嗎?與本節課學習內容有無關聯?”在這樣的問題情境下,逐步激發起學生學習數學的欲望,為學生形成自己的數學思想及數學素養奠定基礎。
2.加強總結復習,適時引入數學思想
在數學教學中引進數學思想方法,目的是讓學生對某一數學思想方法的特征、要素及運用有更多了解,從而可以更好地掌握。在小學數學教材的知識點中蘊含著多種數學思想方法,但大多是以內隱方式融入在知識體系內。若想讓學生理解這些數學思想并轉化為自己的觀點,然后運用它去解決數學問題,前提是對各種知識中表現出來的數學思想進行歸納與總結。在小學數學教學中,常見的思想方法主要有:比較思想方法、分類思想方法、統計思想方法、數學模型思想方法、假設思想方法及類比思想方法等。因為同一思想方法可分布在不同知識點內,而同一內容中也可表現出不同的思想方法,故在單元小結或者總復習中,教師應對知識點內體現出來的數學思想進行總結與概括,提高學生對數學思想的應用意識。
例如,在學習了蘇教版小學數學三年級下冊的《平移和旋轉》該節知識后,教師可引導學生思考除了旋轉、平移這兩種移動方式外,圖形中還有沒有別的變化形式?如果有,和本節所學的平移、旋轉的異同點是什么?在引導的過程中,教師可告知學生這一知識點內蘊含了數學模型思想方法,即通過建立數學模型來解決問題。通過這樣的方法,讓學生在學習過程中領悟到了知識點內蘊含的數學思想方法,并讓學生各自吸收、消化這些數學思想,逐漸形成個人獨特的數學思想與數學素養。
3.重視解決問題,突出數學思想方法
解決數學問題,實質就是對數學思想的轉化與反復應用,而數學思想往往也存在解決問題的過程中。因此,在數學教學中,教師應充分認識到開放性問題在培養數學思想方法中發揮的作用,在解決問題的過程中突出數學思想。
例如,在學習了蘇教版小學數學五年級下冊《認識分數》
4.小結
數學教學的目的是將知識傳授給學生的同時,培養學生獨自的學習能力、解決問題的能力,為日后發展奠定堅實基礎。因此,基于小學數學對學生的重要性,教師在開展教學活動時,應將數學思想充分融入到教學過程中,通過傳達與運用數學思想方法,培養并發展學生的數學核心素養,為學生的健康發展提供更好幫助與支持,且有利于進一步提高教學效果,實現教學目的。
【參考文獻】
[1]徐國明.小學數學核心素養培養的思考與實踐[J].中小學教師培訓,2016(07):42-45
[2]楊孝斌,呂傳漢.論數學教育對中小學生核心素養的培育[J].興義民族師范學院學報,2015(05):74-79
關鍵詞:核心素養;小學數學;師范教育課程
【中圖分類號】G【文獻標識碼】B【文章編號】1008-1216(2018)02B-0025-02
隨著教育的普及率越來越高,各地的教育改革也隨之而來,在新課程改革的大潮中,核心素養已經成為課程改革的關鍵因素。而小學數學作為小學教育中的重要學科,學生數學核心素養的培養更是尤為重要,教師作為學生教學的主體,提升其自身的數學核心素養,對新課程改革的順利推進有著重要的意義。本文通過分析構建小學數學師范教育課程體系的關鍵因素,以及當前我國小學數學師范教育課程體系存在的問題,結合國際先進的特點,提出了相應的建議。
一、數學核心素養是師范教育課程體系構建的關鍵因素
核心素養教學作為一種新興的教育思想,將教育作為學生知識獲取和情志成長的過程,突出了學生的主體。數學核心素養也是基于現有的數學教學活動,形成的一種新興數學教學理念,通過參與教學實踐活動,在活動的經驗積累中不斷總結和思考,從而形成相應的數學課程體系,并且在長期的教學實踐中不斷完善和成熟。根據相關理論指出,數學核心素養包括學生的思想、學習動機、知識獲取、學習態度和信念等。從教師教學的角度出發,數學核心素養需滲透于數學教學課程的設計理念、設置內容等方面。可見,數學核心素養的產生,是構建師范教育課程體系結構的關鍵因素。同時,在小學數學師范教育課程的設置過程中,應充分融入數學核心素養,并且緊密結合教學內容,應用于小學數學教學中,從而推進小學生數學核心素養的培養。
二、我國小學數學師范教育課程體系存在的問題
數學作為一門專業性較強的學科,要求小學數學教師的專業知識功底扎實,才能靈活應用數學法則和方法。通過對我國各地師范院校小學數學專業的課程設置進行分析,發展主要表現在以下三方面:
一是缺乏統一的標準,在搜集對比各地師范學校小學數學教育專業設置的資料發現,不同地區的專業課程在內容、難度標準方面都各不相同,甚至一個省份的不同城市的專業課程內容和難度都差距較大,造成不同地區師范院校畢業學生的就業流動性不強,適應程度不等。
二是隨意性較強,通過對多所師范學校小學數學教育專業的課程設置進行對比發展,課程內容差異較大,很多小學數學專業的教學內容都是通過匯總數學教師平時的教學經驗而得出,導致很多師范院校畢業的小學數學教師,所學的數學知識無法應用到實際的教學中。有的學校對小學數學的課程難度定位過高,加入了中學數學的知識點,與小學數學的實際內容切合度不高。
三是小學數學教育專業學生的實踐教學能力較差。小學數學教師最終的教育陣地在于小學,小學生具有好奇心強、理解能力差、自制力不強等特點。小學數學教師在已經具備相關專業知識的基礎上,要充分結合小學生的特點,靈活應用所學知識,達到寓教于樂的目的,這不但關系到教學內容,而且更能展示教師的實踐教學水平。所以,在師范教育課程體系建構中要提高實踐教學的比重,培育其正確的教育觀念,提升綜合教學素質。但是,從實際情況來看,很多高校對實踐教學的重視程度不夠,在實踐教學過程中缺乏專業指導,很多學校讓學生自己尋找實踐單位,學校缺乏管理和指導,學生在實踐過程中敷衍了事的情況普遍存在,極大影響了學生畢業后在實際教學中的實踐能力。
三、國際上小學數學師范教育課程體系設置的特點
小學數學師范教育課程體系的設置是否合理,直接決定了未來小學數學教師的綜合素質,也間接影響了小學生的未來數學素養。歐美發達國家很早就意識到小學教師的重要作用,將教師教育作為教育戰略的核心內容。所以,很多國家小學師范教育課程體系構建已經完善和成熟,這為我國小學師范教育課程體系的構建提供了重要的參考。
2008年美國針對小學數學師范教育課程體系進行了全面的調研,發現美國大部分師范學校的教育課程設置、教學內容都相差甚大,缺乏統一的標準,與我國當前的情況十分相似。當時,美國教育機構針對此情況收集了全美80所師范院校的教師課程,進行了深入分析和研究,制定了統一的標準。并且,結合小學教學的實際情況和特點,突出小學教師教育的實用性和基礎性,強化教師與學生之間的溝通能力培養,從而增強教師在就職前的教學能力發展。
四、小學數學教師課程體系構建的建議
(一)制定小學數學師范教育課程體系的統一標準
針對我國小學數學師范教育課程在設置上存在隨意性的情況,應由教育部門制定統一的小學數學師范教育課程體系標準,并且組建一支由教研人員、基層小學數學教師等組成的調研隊伍,從核心素養的角度出發,結合數學學科特征和知識重點,篩選出小學數學教師應該具備的核心素養,再參考歐美發達國家的相關標準,制定符合我國特色的小學數學師范教育課程體系標準,為各師范學校提供設置小學數學師范教育課程體系的方向和指導。
由于制定的小學數學教師課程體系標準,將作為以后小學數學教師職前培訓的指導性文件。因此,必須充分考慮其操作性,將標準細化,并且針對每一標準提出具體的實踐建議。比如,小學數學核心素養包含的知識和技能部分,分別說明與小學數學教育有關的知識內容,以及需要小學數學教師具備的具體技能,幫助小學數學教師能夠進行針對性的學習和培訓,從而促使其在編制教學方案、傳授知識時能夠圍繞核心素養展開。
(二)小學數學教師課程設置結合實際需求
在設置小學數學教師課程體系的過程中,設置的課程內容很多都融入了高級數學的知識,與小學數學的關聯度較差。高級數學的設置雖然能夠提高小學數學教師在就職前的理論知識水平,擴展了小學數學教師的專業視野,但是如果脫離了小學數學的實際需求,就不能激發學生的興趣,使小學數學教育工作難以推進。所以,設置小學數學教師課程體系時,要合理分配高級數學比重,緊密結合小學數學需求。
(三)強化小學數學教師的職前實踐
“任何較為復雜的實踐活動都不可能通過簡單套用某一?F成的理論就可獲得成功;恰恰相反,由于對象與情境的多元性與復雜性,所有的實踐不可能被完全納入任何一個固定的理論框架”,“我們應更加重視‘實踐性智慧’”,“借助于案例進行思維”,“作為反思性實踐者,應當高度重視案例(包括正例和反例)的分析與積累,并能通過案例的比較獲得關于如何從事新的實踐活動的重要啟示”[1].個別輔導是數學教學的常規工作.如何提高個別輔導的效果、促進學生數學素養的提高,很值得研究.因此,本文選取案例研究法對數學個別輔導進行探究.
1.1 “說數學”的界定
“說數學”是數學交流中的口頭交流形式.“說數學”是指個體用口頭表達自己對數學問題的具體認識、理解,解決數學問題的思路、思想和方法以及數學學習情感、體會等的數學學習活動,包括“說知識”、“說過程”、“說異見”和“說體會”等環節.它們分別是指口頭表達具體的數學知識,個體解決某數學問題的過程,口頭表達個體對數學問題解決的過程和結果的不同看法,個體探究某數學問題后的情感與體會[2].
1.2 數學核心素養
“數學核心素養可界定為個體在數學學習實踐活動中所形成的、在各種社會生活情境中積極運用數學知識和數學思維分析、解決各種問題,發揮數學應用價值,實現自身與社會持續發展的最基本、最具生長性的相關數學素養.這些素養涉及數學知識、能力、情感、態度、價值觀等多個方面”[3].六個數學核心素養分別是數學交流、數學推理、運算能力、空間觀念、數據處理能力、數學建模.“數學交流”是頂層的基礎性目標,即學生通過數學學習過程,能夠掌握基本的數學符號、語言,并能正確地選擇和使用數學符號語言,通過口頭、圖表或是書面的方式表達自己的想法和觀點,并在理解他人觀點或是具體問題時能選擇恰當的數學術語、符號、圖表等工具進行表征,以及學會傾聽來自不同文化背景下的數學思維方式,在理解的基礎上對他人觀點進行分析與評論,在主動構建論據與他人交流的同時逐步形成批判性思維[3].
看到她的解答,我很吃驚,想不到將角進行轉化真的能做出來.此時,我看完解法2后馬上說:“真的可以哦!你很厲害啊!我剛才的想法是錯誤的!”憑我的工作經驗,我覺得這是一個“說數學”的好機會,讓這個兩年前我任教過的學生“說數學”.我對學生L說:“你的解答很好!你能告訴我這道題考查什么知識嗎?”(“說知識”)學生L看著解答說:“如果用你的做法來做第(1)小題,那就考查余弦定理、正弦定理,第(2)小題考查基本不等式,求三角形的面積的最值.”“對,很好!你現在看來,這道題的解答步驟是怎么樣的?”我繼續問.學生L看著解答,不是很順暢地說:“我認為,第一步是,看到題目的條件之后,要選擇到底要用正弦定理,還是用余弦定理;第二步是,將題目條件的sinA+sinB=(cosA+cosB)sinC化簡;第三步是,想辦法得到有一個內角是90°或者邊長符合勾股定理.第(2)問呢?是求面積的最大值,肯定先要將面積表示出來,那就用S=12absinC=12acsinB=12bcsinA了.”接著我說:“說得很好的!不過我覺得思路上可以更加優化.我們審題時,要將題目條件和問題聯系起來.就第(1)小題來說,我們應先看問題:證明ABC為直角三角形.要證明一個三角形是直角三角形,其方法有兩種:一是證明其中一個內角是直角,二是證明其邊長符合勾股定理逆定理.這時候,再看題目條件適合我們選擇哪一種方法.” 學生L滿意地點頭.我接著再問:“你自己在之前做這道題時,遇到了什么困難啊?”(“說體會”)學生L害羞地說:“我平時做三角解答題,在選擇用正弦定理還是余弦定理上不熟練,有時也會計算出錯.對于這道題的第(2)小問,我完全不知道如何入手,無法將S=12absinC和a+b+c=1+2聯系起來,卡住了.”我追問學生L:“你現在對這習題的解題思路和具體解答清楚了嗎?還有什么不懂的嗎?” 學生L回答:“沒有了.老師,我覺得我剛剛做的將角轉化的解法好像有一個規律.我想說一說,你看對不對?”我馬上贊許地回答:“好啊.你說吧”.她很高興地說:“sinA+sinB=(cosA+cosB)sinC有三個角,我覺得就是要將其中一個消掉,我剛才是用A+C來代替B,后來也用到B+C來代替A.如果不是這樣,真的可能做不出來.”我十分高興地說:“太好了!你說得很對.在數學解題中,消元是十分常見的解題思路.以后要繼續加油學習數學哦!”
3 案例分析與討論
“說數學”作為一種口頭數學交流形式,在數學個別輔導中也可實施,對促進和提高學生的數學素養具有獨特作用.
3.1 “說數學”能促進學生的數學素養水平的提高
“促進學生科學核心素養的整合發展,是當前科學教育實踐和科學教育研究的共同期待”,“真正的科學(包括數學)學習過程是復雜的,學生核心素養的發展是多個因素交互作用的結果,往往是在某一主題下融合多個關鍵能力的培養,某一關鍵能力的培養需要在多個主題下以不同的側重點反復進行.”[4]
按照學生獲得的先后順序和難易程度,數學素養的表現水平可以由低到高分成3個層次:數學知識與技能、數學過程與方法、數學情感態度價值觀.以數學素養提高為目的的數學教育,要求學生理解基本的數學概念和原理,具備一定的運算、抽象、推理能力,能運用數學解決問題,會用數學語言來表達和交流,形成良好的數學情感態度價值觀[5].素質與素養密切相關.素質是指人的先天遺傳特質和后天形成的能力,含有先天遺傳特質的成分,而素養主要是靠后天的學習實踐活動形成的,也就是說,素質中有些東西是不可教的,也不可學的,而素養是可以培養的[5].
在上述案例中,女學生L在做習題1時存在困難,來找我答疑.我在與她交流的過程中,抓住了“說數學”的契機,要她獨立完成解法2,促使她強化了三角恒等變換的知識復習,加深對化歸與轉化思想的認識.通過我的多次提問(啟發誘導),女學生L都給予了及時回答(“說”).她的回答既有知識層面的,也有技能層面的,還有感想體會(情感態度與價值觀)層面的.如此的“說”改變了傳統的答疑就是“老師提供解答”的形式,是在師生互動交流之中完成了答疑,喚醒了學生對知識的記憶,實現了知識的鞏固、轉化、遷移以及應用,能促使學生對習題所考查的知識與技能有更深刻的認識,促進學生回顧解題的過程與運用到的方法,還有激發了學生的數學學習興趣,增強學好數學的自信心.把“說”和“寫”相結合,如此處理一道題的答疑,考驗教師的教學智慧,不是枯燥的知識傳授,而是通過教師的啟發誘導,使得學生回顧解題過程與方法,形成良好的情感態度價值觀,促進了女學生L的數學素養的提高.
因此,“說數學”不僅關注數學知識,還關注數學學習過程與方法以及情感態度與價值觀,有助于提高學生的數學素養水平.
3.2 “說數學”有助于學生的數學核心素養的達成
學生的數學推理、運算能力、空間觀念、數據處理能力、數學建模等情況光靠書面解答能全面反映出來嗎?不能!學生對數學本質的理解、對數學概念結構的把握、對數學學習的態度和信念、對數學精神與思想和方法的領悟、對數學思維的掌握與運用等并非僅僅通過紙筆測驗可評價的.光看上述學生L的解法二,我們能看得出她的數學推理、運算能力水平,但無法了解她的數學學習態度、信念等.“說數學”屬于出聲思維方式,是“與他人互動”和“與自我互動”相結合的學習方式.老師通過學生L的“說數學”,在互動中能較好地了解到她的學習情感態度與信念.“說數學”是傳統的紙筆測驗評價的有效補充,通過口頭方式表達自己的想法和觀點,并在理解他人觀點或是具體問題時能選擇恰當的數學術語、符號、圖表等工具進行表征,以及學會傾聽來自他人(老師)數學思維方式,在理解的基礎上對他人觀點進行分析與評論(“說異見”),在主動構建論據與他人交流的同時逐步形成批判性思維,能有助于學生的數學核心素養的達成.
3.3 “說數學”有助于提高學生的核心素養
核心素養主要是指一個人成功應對實際生活中某種活動或行為所需要的“勝任力或競爭力”,它是由完成該種活動或行為所需要的知識、技能、態度等多種素質要素構成的綜合性素質或整體性素質[6].當今社會要求人具有較好的綜合素質,其中交流能力特別重要.數學教學不僅是數學學科知識的傳授,也需發揮積極的育人功能,為培養全面發展的現代人做出應有貢獻.數學學習過程有時會因數學知識的抽象性、嚴謹性等特?c而讓學生感到枯燥乏味.其實,只要學生對自己的學習情況“敢于交流、懂得交流、善于交流”,那他們就會學得開心,學得有勁,信心百倍,增強數學學習興趣.學生應該在數學學習中鍛煉和提高綜合素質,不僅是懂得解題.書面解題是數學學習的一種方式,但不是全部.“說數學”也是數學學習方式之一.素養是可以后天培養的[5].因此,數學教師應通過數學教學承擔起培養和提高學生核心素養的責任.
在上述案例中,學生L在看了我的現場解答之后,在我的引導下“說數學”,反應很敏捷,口頭表達順暢且有條理,準確性高,思維活躍.這充分表明學生L對習題1在解法1的學習的基礎上,有了較深刻的認識,能在很短的時間里想到解法2,這是不容易的.能在我面前流利地“說知識”、“說過程”、“說體會”,說明學生L在數學學習中“敢于交流、懂得交流、善于交流”,具有積極的數學學習情感.數學個別輔導(答疑)較多是“學生問,老師答”,老師給出的往往是書面解答,較少口頭解釋,極少關注學生的問題解決過程、體會等,至多就是老師談談自己是如何想到解題思路的,提提解題的注意事項.可是,個別輔導應該是師生個體之間交流互動的最佳時機.教師應該把握契機,提高學生的數學交流能力,培養學生的核心素養.這樣,才能最大限度地發揮數學教學的育人功能.